首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
由过量二氧化碳(CO2)排放导致的温室效应使得全球气候变暖问题日益紧迫,在“双碳”背景下,如何资源化利用CO2尤为重要。光催化还原CO2生成化学品和燃料是有望同时解决能源危机和环境问题的途径。非金属半导体聚合氮化碳(PCN)具有可见光响应、化学稳定性高、易于制备等优点,在光催化领域备受关注,但由传统热聚合方法得到的PCN存在比表面积小、电子-空穴对复合严重、对可见光吸收范围窄等不足之处。介绍了光还原CO2的反应机理和PCN的结构,总结了PCN的制备方法以及提升其光还原CO2性能的手段,包括形貌调控、异原子掺杂、缺陷工程和构建异质结等。最后,对目前PCN材料在CO2光还原反应研究中存在的问题进行了分析,并对未来发展方向进行了展望。  相似文献   

2.
3.
聚合氮化碳(CN)具有可见光响应、化学性质稳定、廉价易得、无毒等优点,在光催化领域得到了广泛的研究和应用,但是存在比表面积较小、电子-空穴对易复合等不足之处,严重限制了其光催化性能。以尿素和常见的两种钴盐[CoCl2和Co(NO3)2]为前驱体,通过一步煅烧法制备了钴(Co)掺杂CN,研究了不同Co源对材料光催化还原二氧化碳(CO2)性能的影响。实验证明,由适量氯化钴(CoCl2)为Co源得到的Co掺杂CN,其光催化还原CO2生成一氧化碳(CO)的速率可由纯CN的82.7μmol/(g·h)提升至374.5μmol/(g·h),同时CO选择性由79.1%提高至88.5%;而以硝酸钴[Co(NO3)2]为Co源得到的Co掺杂CN倾向于产氢,其光催化还原CO2性能基本不能得到提升。通过对光催化剂进行电感耦合等离子体(ICP)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(...  相似文献   

4.
分别采用硫酸、盐酸和硝酸对尿素热解得到的体相块状石墨相氮化碳(g-C_3N_4)进行质子化改性,超声剥离得到氮化碳纳米片,考察3种质子化氮化碳纳米片对亚甲基蓝染料的光催化降解性能,利用XRD、FT-IR、SEM、BET、UV-DRS、UV-VIS等对其结构、形貌、比表面积、禁带宽度进行分析。结果表明,硫酸改性后的g-C_3N_4比表面积最大(60. 9 m~2·g~(-1)),亚甲基蓝降解效果最好,降解率为46. 7%,相比于体相块状g-C_3N_4的29. 2%提高了17. 5个百分点。以硫酸质子化改性的g-C_3N_4为前驱体,采用搅拌法制备得到质子化g-C_3N_4/石墨烯复合材料,其光催化降解亚甲基蓝的降解率为81. 7%,较硫酸质子化g-C_3N_4提高了35. 0个百分点。  相似文献   

5.
以氮化碳(g-CN)为原料,采用水蒸汽焙烧剥离法在Ar/H2O氛围下制备薄层氮化碳(Hg-CN),并对其进行XRD、TEM、FT-IR、BET和UV-Vis DRS等表征。结果表明,进行剥离后,H-g-CN比表面积相比剥离前明显增大。H-g-CN的光催化还原CO_2活性大大高于未剥离gCN的活性,光照反应9 h,H-g-CN光催化还原CO_2活性由剥离前的11. 4μmol·g~(-1)提高至24. 6μmol·g~(-1),H-g-CN的CO选择性为91. 2%,未剥离的g-CN的CO选择性为89. 1%,并提出相应的反应机理。  相似文献   

6.
以四氯化锡五水合物、乙二醇和氨水为原料,在微波辅助水热条件下快速合成氧化锡纳米颗粒,以尿素 为前体在马弗炉中退火得到g-C3N4,使用柠檬酸和乙二胺为原料水热合成碳量子点。室温下,将碳量子点/ g-C3N4/SnO2在通风橱中进行搅拌得到碳量子点负载的氮化碳/氧化锡复合材料。通过透射电子显微镜(TEM)、 X射线衍射(XRD)、氮气吸附-解吸等温线(BET)、紫外-可见分光光度计(UV-vis)、电子自旋(顺磁)共振波谱仪(ESR)对复合材料的形貌、结构特征、吸光度和光催化过程中的活性物质等进行表征和分析,并通过在紫外光下降解罗丹明B(RhB)测试样品的光催化性能。试验结果表明,紫外-可见分光光谱吸收边缘的红移说明碳量子点负载后能提高复合材料在可见光区域的响应,光催化试验表明碳量子点负载能提高g-C3N4/SnO2复合材料的光催化性能,当碳量子点负载量为7%时复合材料的降解效率最高,在3h内对RhB的降解效率为97%。此外,微波辅助水热法能在短时间内大量合成氧化锡纳米颗粒,且氧化锡纳米颗粒具有较小的晶粒尺寸(8.5nm),可以高效制备并应用于环保领域。  相似文献   

7.
分别以尿素、三聚氰胺为前驱体,采用缩聚法制备不同形貌及性能的类石墨相氮化碳(g-C3N4)半导体催化剂,探究不同前驱体对催化剂的形貌及光催化还原CO2活性的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见光分光光度计(Uv-vis)、傅氏转换红外线光谱分析(FTIR)、比表面积测试(BET)、荧光光谱(PL)对所得g-C3N4进行各方面性能的探究,从而分析前驱体对所得产物性能的影响。实验结果表明,以尿素为前驱体制备出的g-C3N4在甲醇溶液中光催化还原CO2制备甲酸甲酯的产率 为512.8μmol/gcat•h ,以三聚氰胺为前驱体制备出的g-C3N4光催化产率为257.3 μmol/gcat•h。  相似文献   

8.
石墨相氮化碳(g-C3N4)作为环境友好型材料在半导体光催化领域广受关注,然而未经改性的g-C3N4光吸收范围窄,仅能对太阳光谱中蓝紫光区响应,同时比表面积小,且光生载流子分离及迁移速率慢,导致光催化性能不佳。本文以g-C3N4为研究对象,将甲酸铵(NH4HCO2)和硫脲(CH4N2S)按不同比例混合,在马弗炉中520℃下高温煅烧(升温4 h保温2 h),制得C元素掺杂的石墨相氮化碳。g-C3N4中掺杂C元素可提高光吸收能力、调整电荷密度、促进光生载流子解离,从而显著提高其光催化效率。通过降解模拟污染物罗丹明B(RhB)发现,当n(CH4N2S)∶n(NH4HCO2)=1∶0.04时表现出最好的光催化活性,其对罗丹明B的降解效率几乎能达到1...  相似文献   

9.
采用二次合成法制备了氮化硅胶.考察了水量、氮化温度对氮化硅胶合成的影响。采用扫描电镜、元素分析、X-射线光电子能谱和29SiMASNMR等方法对氮化硅胶进行了袁征。结果表明:水量是影响氮化硅胶粒径大小的重要因素;随着氮化温度的升高,氮化硅胶的氮含量(质量分数)增加;在氨气流速为i00mL·min^-1、氮化温度为1000℃、氮化时间为20h的条件下,氮化硅胶的氮含量达9.48%。将氮化硅胶用于C03的吸收,与未氮化的硅胶相比,氮化硅胶对CO2有明显的吸收能力,吸收量从3.08×10^-4g·g^-1提高到6.71×10^-4g·g^-1。  相似文献   

10.
以尿素热解得到的块状体相氮化碳为前驱体,采用硫酸质子化结合超声剥离的方法制备氮化碳纳米片分散液,考察不同工艺条件如溶剂种类、稳定剂浓度、氮化碳原料浓度、超声时间等对其分散性的影响。通过UV-Vis、FTIR、XRD、SEM、BET等方法对分散液的浓度、结构、微观形貌和比表面积进行表征分析;并以亚甲基蓝为目标降解物,研究其在可见光照射下的光催化性能。结果表明,以水为溶剂、ρ(稳定剂)=1.2 mg/mL、ρ(氮化碳)=1.0 mg/mL、超声时间为18 h制备的氮化碳纳米片分散液性能最好,其在可见光照射180 min后对亚甲基蓝的光催化降解率达77.93%。  相似文献   

11.
12.
摘要:利用水热反应法,将三聚氰胺悬浊液在200 ℃下反应生成中间产物,然后煅烧中间产物直接制成了二维石墨相氮化碳g-C3N4纳米片(WCN),并与本体g-C3N4(CN)、传统热氧剥离法得到的g-C3N4纳米片(OCN)进行了比较。采用SEM、XRD、FTIR、Raman、AFM、PL仪等对催化剂进行了表征,探讨了催化剂的光电化学性能和光催化性能。结果表明:两种方法均实现了对CN的剥离,WCN和OCN二维纳米片与CN 晶体结构和组成相同,WCN和OCN的比表面积分别是CN的4倍和3倍。光电化学分析显示WCN有更好的载流子的迁移与分离效率,具有较好的光催化活性。在可见光条件下,WCN对亚甲基蓝(MB)的光催化降解率达到82%,分别是OCN和CN的2.4 倍和6.7 倍,光催化降解过程符合一级动力学方程。WCN具有优良的稳定性和可重复利用性能。  相似文献   

13.
利用水热反应法将三聚氰胺悬浊液在200℃下反应生成中间产物,中间产物经煅烧直接制成了二维石墨相氮化碳(g-C3N4)纳米片(WCN),并与本体g-C3N4(CN)、传统热氧剥离法得到的g-C3N4纳米片(OCN)进行了比较.采用SEM、XRD、FTIR、Raman、AFM、PL对样品进行了表征,探讨了其光电化学性能和光催化性能.结果表明,两种方法均实现了对CN的剥离,WCN和OCN与CN的晶体结构和组成相同,WCN和OCN比表面积分别是CN的3.6倍和3.1倍.光电化学分析显示,WCN具有更好的载流子迁移与分离效率,具有较好的光催化活性.可见光照射下,WCN对亚甲基蓝(MB)的光催化降解率达到82.0%,分别是OCN和CN的2.4倍和6.7倍,光催化降解过程符合一级动力学方程.WCN具有优良的稳定性和可重复利用性能.  相似文献   

14.
稀土掺杂TiO2光催化还原CO2   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了稀土掺杂TiO2纳米光催化剂,并应用于光催化还原CO2/H2O体系中。通过XRD对光催化性能进行表征,研究稀土离子掺杂和焙烧温度对光催化性能的影响。结果表明,稀土La和Ce的加入可以抑制TiO2的晶相转变,提高光催化性能。催化剂800 ℃焙烧可达到最好的光催化活性,在反应时间7 h、CO2流量200 mL·min-1和反应液中NaOH与Na2SO3浓度均为0.10 mol·L-1条件下,甲醇产率高达315.49 μmol·g-1。并对稀土掺杂TiO2催化剂光催化还原CO2的机理进行了探究。  相似文献   

15.
Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.  相似文献   

16.
张轩  郑丽君 《化工进展》2021,40(Z1):215-222
氢能能量密度高、环境友好,是一种潜力巨大的可再生能源,可以有效减轻甚至解决传统化石能源所带来的全球气候挑战。利用太阳能光催化水解制氢是一种理想的制氢方法,其中光解催化剂是这一领域的研究核心。本文介绍了近些年TiO2、CdS和g-C3N4这3种最典型、最有前景的单相催化材料的研究现状及进展,分别对每种催化剂的特点和改性方法进行了总结。通过调变表面形貌或者与其他物质掺混,可以有效地改善光解催化剂对太阳能利用率不足、光生电子/空穴复合过快等问题,并由此提高光催化活性和稳定性,但离工业化仍有很大距离。最后指出了当前光解水制氢催化剂所面临的问题并展望了研究方向,为未来设计合成高效、稳定的光催化剂提供参考。  相似文献   

17.
利用可再生清洁能源——太阳能,将CO2转化为一氧化碳、甲烷、甲醇等,因同时具有提供可持续燃料和解决全球变暖问题的潜力而受到越来越多的关注。铁基材料因具有金属/半导体的特性和独特的电子结构,在光催化还原CO2领域具有广阔的应用潜力。基于此,各种具有高催化活性的铁基催化剂已经被设计来提高光催化还原CO2的效率。概述了近年来铁基催化剂在光催化还原二氧化碳中的研究进展,对它们的结构特征和催化活性进行了阐述和比较,最后总结了铁基催化剂在光催化还原CO2领域中待解决的问题,并展望了未来发展的方向。  相似文献   

18.
In many photocatalytic reaction paths, the breaking of the first C O bond in a CO2 molecule is often the key step that becomes the rate-controlled reaction step. In this paper, a graphitic carbon nitride (g-C3N4) supported nickel single-atom catalyst (Ni@g-C3N4) was successfully constructed, and the mechanism of CO2 catalytic reduction was systematically studied based on density functional theory (DFT). The introduction of nickel promotes the adsorption of small molecules, especially for the CO2 activation. According to density of states (DOS) and frontier orbital analysis, the photogenerated carriers tend to jump from nitrogen atoms to carbon atoms, forming an electron transfer in real space, after g-C3N4 is excited by light. With the appearance of nickel-doped levels, the DOS of Ni@g-C3N4 is no longer symmetric with respect to the spin up and down, especially around the original band gap of g-C3N4. Single-atom nickel has abundant frontier orbitals and high activity and is a favourable place for chemical reactions. The presence of surface hydrogen can promote the recovery of CO2, and the energy barrier of Ni@g-C3N4 with hydrogen is only 15% of the clean g-C3N4 surface. This paper provides a new idea for the development of efficient single-atom catalysts for CO2 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号