首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
高通量工程试验堆堆芯流量分配计算   总被引:2,自引:1,他引:2  
建立了合理的高通量工程试验堆(HFERT)堆芯流量分配计算模型,并编制了相应的计算程序。应用此程序可以精确计算和分析HFETR堆芯流量分配和温场。经过中国核动力研究设计院提供的实验数据的验证计算表明,本程序计算结果与相应的实验数据符合很好。  相似文献   

2.
中国先进研究堆堆芯流量分配计算   总被引:2,自引:0,他引:2  
针对中国先进研究堆(CARR)正常运行强迫循环工况和自然循环工况下堆芯内冷却剂流动方向相反的特点,开发了堆芯流量分配计算程序。程序针对这两种运行工况进行了全堆芯的数值模拟,得出堆芯流量分配计算结果和非对称冷却条件下板状燃料元件的温度场。计算发现两种工况下堆芯内各通道的流量份额变化不大,表明流量分配主要取决于通道几何形状和尺寸,基本可以忽略功率分布不均的影响。  相似文献   

3.
堆芯入口流量分配研究是新型反应堆设计过程中一项重要的工程验证实验,其结果能为反应堆的热工水力及安全分析提供数据支撑。本文针对中国工程试验堆(CENTER),采用缩比模型开展了堆芯入口流量分配特性实验研究,在不同工况下获得了模拟燃料组件、铍/铝组件、钴靶组件及控制棒导向管内的流量分配因子。实验结果表明:在本文研究的工况范围中,堆芯中大部分冷却剂流过模拟燃料组件,同类型模拟组件间的流量分配较均匀,最大流量相对偏差在±4%以内。实验入口总流量对流量分配特性几乎没有影响。  相似文献   

4.
中国实验快堆全堆芯流量分配计算与试验   总被引:4,自引:0,他引:4  
针对中国实验快堆(CEFR)堆芯和一回路的设计特点,开发水力特性计算程序DAEMON,完成不同工况下的全堆芯流量分配计算,给出流量分配不均匀性等参数。在反应堆调试阶段,进行全堆芯流量分配试验。结果表明,程序计算值与试验值符合较好。在此基础上,验证了CEFR堆芯的流体力学设计,并为反应堆调试和运行提供了基础数据。  相似文献   

5.
文中通过一些有效近似,根据单群中子模型建立了计算堆芯初始有效增殖系数、元件燃耗、元件热中子积分通量和元件积分功率等物理量的计算公式。  相似文献   

6.
论述了高通量工程试验堆堆芯燃料元件的温度-流量测量装置及其测量系统,论述了在反应堆提升功率、首炉全寿期运行试验和第二炉加深元件燃耗试验中仪表燃料元件在稳态与动态测试方面的应用情况,论述了确定肋下热点温度的方法,进行了误差分析,介绍了燃料元件出堆脱水试验。该测量装置成功地用于高通量堆的高功率、深燃耗安全运行,燃料元件 随堆辐照及各种试验研究。装有本测量装置的仪表燃料元件经过两炉运行,积分功率达到9088MWd,最大点燃耗约为64.9%,从而大大提高了高通量堆燃料使用的经济性。  相似文献   

7.
反应堆堆芯入口流量分配是反应堆水力性能研究的重要内容之一,其与堆芯热裕量和燃料组件燃料棒的流致振动密切相关,从而影响反应堆的运行。CAP1400反应堆堆芯入口流量分配试验是验证CAP1400反应堆结构设计与分析的一个重要环节,旨在验证CAP1400反应堆堆芯入口流量分配的均匀程度。本文通过1/6比例模型试验,获得无均流板结构工况和带均流板结构3种工况(均匀流量工况、非均匀流量工况、偏回路流量工况)下CAP1400反应堆堆芯入口流量分配结果,并进行了各工况下流量分配均匀程度的分析。试验结果表明,CAP1400反应堆堆芯入口具有较好的流量分配效果。  相似文献   

8.
超临界水冷堆堆芯简化模型流量分配研究   总被引:4,自引:1,他引:3  
选取超临界水冷堆(SCWR)燃料组件作为研究对象,在平均孔口尺寸条件下,对堆芯功率分布进行模拟,建立了热工水力计算模型并进行了程序的开发,计算出了各个并联通道内的冷却剂流量以及相关参数分布.结果表明,平均孔口尺寸条件得到的各组群燃料通道轴向密度分布、堆芯功率分布存在较大的不均匀性,致使流量分配存在较大的差异;通过增大高功率组群的孔板尺寸即可得到较为合理的热工水力参数分布.  相似文献   

9.
堆芯流量分配特性是自然循环铅基快堆热工水力设计的重要内容,一回路腔室几何结构是影响堆芯流量分配特性的重要因素之一。利用计算流体力学方法(Computational Fluid Dynamics,CFD)模拟小型模块化自然循环铅冷快堆(Small Modular Natural Circulation Lead-cooled Fast Reactor-10 MW,SNCLFR-10)一回路流场,分别研究一回路上腔室提升筒高度、中心测量柱半径及长度,下腔室深度、纵横比以及导流结构高度对堆芯流量分配特性的影响特性。研究结果表明:改变提升筒高度、中心测量柱半径及长度对堆芯流量分配特性影响较大;改变反应堆下腔室深度和下腔室纵横比对堆芯整体流量和流量分配特性所造成的影响不显著;在反应堆下腔室加装角状凸起形导流结构可有效改善下腔室流场,但无法有效改变堆芯流量分配特性。  相似文献   

10.
堆芯入口流场设计是小型固态燃料熔盐堆系统项目内容之一,它对反应堆结构的稳定性、堆芯温度和流场分布有着非常重要的影响。研究了熔盐流道流通面积变化对堆芯入口温度、流场分布及压降的影响,优化熔盐流道几何结构。以小型熔盐球床堆模型为研究对象,取符合实际边界条件的输入参数,通过改变熔盐流道流通面积,使用计算流体力学(Computational Fluid Dynamics,CFD)通用程序Fluent 16.0对堆芯入口内熔盐的热工水力特性进行数值模拟。在考虑实际下反射层流道的流通面积占比最大为18.14%下,研究了熔盐流道流通面积占比在区间[0,15.00%]变化。结果表明,堆芯活性区熔盐最高局部热点温度随熔盐流道流通面积比的增大而增高;堆芯入口内的压降随下反射层熔盐流道流通面积比的减小而增大;在径向方向上流进孔道的熔盐流速随着孔道远离堆芯位置而增大。本研究可为小型固态燃料球床熔盐堆优化设计提供一定的参考价值。  相似文献   

11.
为研究堆芯组件安装方式对组件间流量分配的影响,通过CFD数值模拟软件FLUENT,对中国实验快堆(CEFR)1型小栅板联箱上的7盒组件在22种安装情况下进行三维数值模拟。由计算结果可知,组件在22种布置情况下的流量与设计值的相对偏差为0.41%~2.03%。根据计算结果可更准确地预测堆内最热管的流量分配,可为今后CEFR的组件安装方式提供参考。  相似文献   

12.
CEFR小栅板联箱及其节流件数值模拟   总被引:1,自引:1,他引:0  
使用流体力学软件CFX对中国实验快堆Ⅰ型小栅板联箱及其节流件进行稳态模拟计算,研究Ⅰ型小栅板联箱及其节流件内压力分布、速度分布.并研究联箱内7个燃料元件管脚入口的流量分配,以及影响管脚进口流量分配的因素,以提高堆芯流量分配的精度.  相似文献   

13.
实验测量同轴喷射流模型三维温度场和二维速度矢量场,分析不同入口速度比对三维温度振荡的影响。实验结果表明:R<1时,冷热流在底部完成了混合行为,平均温度不呈轴对称分布,而R≥1时,呈轴对称分布,但流体瞬态温度不呈轴对称分布。随着R的增加,冷流随高度增加温度上升的梯度减小,而热流温度下降的梯度则增大;R>1时,流场温度振荡强度小于R≤1的,其强温度振荡发生在冷热流之间和热流与环境流之间的区域。不同R下,温度振荡主要频率均分布在7Hz以内。  相似文献   

14.
在聚变堆氦冷固态包层氚增殖区,球床通道内氦气流动压降特性对泵功率的设计具有重要意义。以氦冷固态包层氚增殖区为背景,研究了氦气流速、球床颗粒直径及球床通道长度对球床通道内氦气流动压降特性的影响。实验段采用20 mm×20 mm×500 mm的矩形通道,实验中氦气流速为0.1~0.6 m/s,球床颗粒直径为0.5、0.8、1.0、1.5、2.0 mm。实验结果表明,压降与氦气流速以及球床通道长度呈正相关,与球床颗粒直径呈负相关。对比Ergun关系式发现,在球床颗粒直径较小时,Ergun关系式预测值低于实验值,这主要是由于氦气可压缩性的影响。通过动量方程,理论推导出经可压缩性修正的Ergun关系式,结果发现修正后的Ergun关系式预测值与实验值符合良好。本研究为氦冷固态包层氚增殖区设计提供了数据支撑,为球床通道内流动特性的数值模拟提供了验证手段。  相似文献   

15.
堆顶固定屏蔽在中国实验快堆(CEFR)中承担着重要功能,对其进行充分冷却极其重要。本文采用CFD方法对该设备的冷却系统进行了三维数值研究,详细分析了该冷却系统的流动特性和水力学设计,并对设计中的不足提出了优化建议。研究表明,该冷却系统基本可满足要求,但部分环节需要优化。将调节阀尽量均匀布置可改善水平风道流场分布;入口处设置两道通风孔可提高竖直风道内空气流动的均匀性;调节阀开度应适当增加以进一步满足流量分配需求。该研究可为CEFR运行安全和类似冷却系统的设计提供参考。  相似文献   

16.
冷却剂流经核反应堆堆芯时,绝大部分通过燃料组件内部流过,带走裂变能量。另外一小部分作为旁流经过燃料组件外侧流道、控制棒导向管外侧及内侧流道流出。为确保反应堆在正常运行工况下的安全性,必须限制堆芯旁流流量。本文通过开展导向管外侧流道阻力特性实验研究,在不同流量工况下获得了分段压差,并进一步拟合了雷诺数与阻力系数的关系式。实验结果表明,导向管外侧流道压力损失主要集中在堆芯下栅格板处,当反应堆额定工况运行时,单组导向管外侧流量仅为0.196 m3/h。  相似文献   

17.
应用CFX对堆芯围桶开孔处温度场及流场进行模拟计算并对结果进行分析。利用模型Ⅰ、Ⅱ分别计算得到堆芯围桶开孔处的温度场及流场,并得到在正常工况下堆芯围桶开孔处钠的流动方向。计算验证了事故余热排出系统(CAPX)水台架的试验结果,为CEFR堆芯围桶开孔的安全分析打下基础。  相似文献   

18.
在中国实验快堆(CEFR)物理启动过程中,对CEFR压力反应性和流量反应性效应进行了测量研究,并进行初步的误差分析。实验中堆芯反应性测量分别使用周期法和逆动态法。实验结果表明:CEFR压力反应性为正反馈,主容器覆盖气体压力从5 kPa升高至50 kPa过程中引入约+20 pcm反应性,升、降压力过程测量结果的相对偏差小于10%;CEFR流量反应性为负反馈,一回路泵转速从150 r/min升高至989 r/min过程中引入约-49 pcm反应性,升、降流量过程测量结果的相对偏差小于10%。周期法和逆动态法的测量结果符合较好。初步误差分析的结果表明,实验结果的测量精度主要由冷却剂温度测量的精度决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号