共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
针对Sqoop在导入大表时表现出的不稳定和效率较低两个主要问题,设计并实现了一种新的基于MapReduce的大表导入编程模型。该模型对于大表的切分算法是:将大表总的记录数对mapper数求步长,获得对应每个split的SQL查询语句的起始行和区间长度(等于步长),从而保证每个mapper的导入工作量完全相同。该模型的map方式是:进入map函数的键值对中的键是一个split所对应的SQL语句,将查询放在map函数中完成,从而使得模型中的每个mapper只调用一次map函数。对比实验表明:两个记录数相同的大表,无论其记录区间如何分布,其导入时间基本相同,或者对同一表分别用不同的分割字段,导入时间也完全相同;而对于同一个大表,模型的导入效率比Sqoop有显著提高。 相似文献
3.
Hadoop平台中MapReduce调度算法研究 总被引:2,自引:0,他引:2
MapReduce是一种新型的并行计算框架,在计算速度,容错性,可靠性等方面具有优势,因此得到了广泛的商业应用与科学研究。而调度算法作为MapReduce的核心组成部分,它的优劣成为了直接影响MapReduce性能的关键因素,因而得到了很大的关注。在介绍和分析MapReduce并行计算模型的基础上,介绍了几种相关的模型改进,并基于Hadoop平台,重点研究了MapReduce的常用调度算法及改进算法。通过对比分析,就MapReduce未来的发展进行了进一步的探讨,为其调度算法的改进提供有效的方法。 相似文献
4.
5.
针对MapReduce模型中存在的多个Reduce任务之间完成时间差别较大的问题,分析了影响Reduce任务完成时间的因素,指出了MapReduce模型中Reduce任务节点存在数据倾斜问题,提出了一种改进型的MapReduce模型MBR(Map-Balance-Reduce)模型。通过添加Balance任务,对Map任务处理完成的中间数据进行均衡操作,使得分配到Reduce任务节点的数据比较均衡,从而确保Reduce任务的完成时间基本一致。仿真实验结果表明,经过Balance任务后,Map任务产生的中间数据能够比较均衡的分配给Reduce任务节点,达到数据计算均衡的目的,在一定程度上减少了整个作业的执行时间。 相似文献
6.
针对Hadoop平台MapReduce分布式计算模型运行机制中的顺序制约而产生的计算资源浪费问题,从提高平台中每个执行节点的细粒度并行数据处理角度出发,结合Java共享内存多线程编程技术,对该模型进行了优化,提出一种MapReduce+OpenMP粗细粒度相结合的分布式并行计算模型。并在由四个节点组成的Hadoop集群环境下对不同规模大小的出租车GPS轨迹数据分析处理,验证该模型的性能和效率,实验结果证明MapReduce+OpenMP分布式并行计算模型确实能够提高针对大数据集的计算效率,是对Hadoop平台大数据分析处理模型有效的完善和优化。 相似文献
7.
基于Hadoop云计算模型探究 总被引:1,自引:0,他引:1
云计算是并行计算、分布式计算和网格计算的发展。文中详细地阐述了MapReduce的编程思想、工作原理、步骤和方法。探讨了来自Apache开源的分布式计算平台Hadoop的核心设计MapReduce编程模型,并通过算法实验分析和研究了MapReduce模型的工作方式和应用方法。 相似文献
8.
对某高校教学资源平台的海量日志进行了分析,将传统单机分析处理模式,转变为Hadoop框架下的MapReduce分布式处理模式。MapReduce采用分而治之的思想,很好地解决了单机对海量数据处理产生的瓶颈问题。通过分析Hadoop源码的使用,认真研究MapReduce对海量数据处理作业流程分析,提出了MapReduce分布式作业计算的优化策略,从而更好地提高了海量数据的处理效率。 相似文献
9.
基于开源云计算平台Hadoop的MapReduce是当前流行的分布式计算框架之一,然而其先进先出(FIFO)调度算法存在资源利用效率低下的问题。提出了一种基于资源匹配规则的MapReduce任务调度模型并进行了算法实现。该调度模型通过获取任务的资源需求与计算节点的剩余资源,依据资源的匹配性进行任务分配,提高了系统的资源使用效率。首先对MapReduce的调度过程进行建模,提出了资源及匹配度的量化定义和相应的计算公式;然后给出了资源测量的具体方法及算法实现;最后利用TeraSort、GrepCount和WordCount任务与FIFO调度算法进行实验对比,实验结果显示,最好的情况下,提出的调度模型任务完成时间减少了22.19%,而最差情况下的吞吐量也提高了25.39%。 相似文献
10.
在对海量数据进行聚类的过程中,传统的串行模式局限性越来越明显,难以在有效时间内得出满意结果的问题,本文提出一种基于Hadoop平台下MapReduce框架的并行聚类模型。理论和实验结果证明该模型具有接近线速的加速比,针对海量数据具有较高效率。 相似文献
11.
基于Hadoop MapReduce模型的应用研究 总被引:4,自引:0,他引:4
MapReduce是一种简化并行计算的分布式编程模型,是Google的一项重要技术,通常被用于数据密集型的分布式并行计算.探讨了来自Apache开源的分布式计算平台Hadoop的核心设计MapReduce编程模型,并通过算法实验分析和研究了MapReduce模型的工作方式和应用方法. 相似文献
12.
多服务员时两种等待队列性能的比较 总被引:4,自引:0,他引:4
利用排队论的相关知识,对计算机系统中常见的多服务员情况下的排队现象进行分析,通过理论推导、并用实际数据表明了在多服务员模式下,单一共享的排队等待队列的性能要优于多个独自的排队等待队列。 相似文献
13.
一种多用户MapReduce集群的作业调度算法的设计与实现 总被引:1,自引:0,他引:1
随着更多的企业开始使用数据密集型集群计算系统如Hadoop和Dryad实现了更多的应用,多用户间共享MapRe-duce集群这种既减少了建立独立集群的代价,同时又使得多用户间可以共享更多的大数据集资源的需求日益增多。在公平调度算法的基础上,结合槽分配延迟和优先级的技术,本文提出了一种改进算法,可以实现更好的数据本地性,改善整个系统的计算性能如吞吐率、响应时间等;同时为了满足差别化的商业服务,通过对用户设置相应的优先级保证紧急任务的完成。 相似文献
14.
MapReduce分布式编程模型为大规模数据密集型计算提供了重要的应用基础平台.其任务调度模型为单点控制模型,这种模型使得体系结构简单,任务调度易于控制,但同时也存在中心节点失效的问题.在Hadoop系统中,当中心节点失效后,为了使得整个工作集群中的作业不中断,在不同版本的Hadoop中采取了按需同步、恢复历史记录和抛... 相似文献
15.
分析了 Cloudera 公司推出的 Impala 实时查询引擎原理与架构,并深入比较 Impala 与传统 MapReduce 的性能与特点,针对 Impala 进行复杂大数据处理方面的不足,提出了 MapReduce 与 Impala 结合的大数据处理方法,通过使用 MapReduce 对 Impala 的输入数据进行预处理,利用 MapReduce 在复杂作业处理方面的长处弥补了Impala 在这方面的不足。最后对电信手机上网日志进行大数据查询和分析计算实验,实验结果表明,在大数据查询性能方面,基于 MapReduce 与 Impala 结合的大数据处理速度比传统 MapReduce 快了一倍。特别地,在迭代查询实验中,基于 MapReduce 与 Impala 结合的处理方法超过传统 MapReduce 方法八倍以上。基于 MapReduce与 Impala 结合的处理方法在单次查询中的效率仍然高于传统 MapReduce;而在迭代查询中,MapReduce 与 Impala结合的处理方法远远地超过了 MapReduce。因此,MapReduce 与 Impala 结合的处理方法能够发挥 Impala 和 Ha-doop 各自的优点,让处理效率远超传统 MapReduce,对于复杂的大数据处理的能力高于 Impala。 相似文献
16.
通过对Nutch MapReduce job配置参数调优而优化Nutch爬行性能。以Hadoop视角梳理Nutch爬行过程,并基于此详细分析Nutch MapReduce job的工作流特性;对Nutch爬行时MapReduce job进行持续监测,生成优化参数并代入下一轮相同类型的job运行中,从而达到优化目的;通过选取合适的间隔监测值平衡集群环境误差和监测负载以改进优化效果。经过实验测试,Nutch的爬行性能提高了5%~14%,且当监测间隔值为5时有最好优化效果 相似文献
17.
随着网络的普遍应用,网络中产生的数据急剧增长,大规模数据处理面临严峻挑战。本文在对AP聚类算法进行研究的基础上,利用MapReduce编程模型思想对AP聚类算法进行改进,设计在云平台Hadoop环境下运行的基于MapReduce的分布式AP聚类算法,并在实验中对不同规模的图数据进行聚类测试,实验结果表明分布式的AP聚类算法具有很好的时间效率和加速比。 相似文献
18.
19.
云计算下的海量数据挖掘研究 总被引:6,自引:0,他引:6
云计算的出现为愈来愈多的中小企业分析海量数据提供廉价的解决方案。在介绍基于云计算的Hadoop集群框架和数据挖掘技术中的SPRINT分类算法的基础上。详细描述SPRINT并行算法在Hadoop中的MapReduce编程模型上的执行流程.并利用分析出的决策树模型对输入数据进行分类。 相似文献