首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
王洪亮  冯严冰 《城市建筑》2014,(14):202-202
根据绿色建筑特征划分评价阶段,选取合适评价指标,进而设计一种基于项目全寿命周期的绿色建筑经济评价指标体系,通过综合经济性分析得出科学结论,为项目决策和经济效益评价提供依据,促进绿色建筑市场健康发展。  相似文献   

2.
工程结构的绿色设计和绿色评价存在共性,在已建立的可持续发展工程结构全寿命周期设计理论体系基础上,参考国内外的绿色建筑评价体系,根据其共性构建了工程结构全寿命设计的绿色指标体系。该体系包含了三个指标,即以所处环境为对象的“环境评价指标”、以人为对象的“用户及社会满意度指标”和以区域和全球生态系统为对象的“可持续发展指标”。工程结构的全寿命设计传统指标是对现行设计方法的扩展和延伸,而绿色指标则是独立于传统设计方法体系之外的新体系,体现了全寿命设计方法的人文关怀和对自然的责任。为了将工程结构全寿命活动的环境和生态影响控制到最低水平,并使相关人群的利益最大化,通过指标分层、指标分类和权重分析,建立了建筑结构全寿命绿色设计指标体系。针对沿海高速公路桥梁结构的结构形式、用途和所处环境,构建了其全寿命设计绿色指标体系框架。  相似文献   

3.
《建筑钢结构进展》2020,(3):121-128
对装配式钢结构建筑和混凝土建筑进行了全寿命周期经济性分析。以济阳县第二实验小学教学楼项目工程为例,选取钢框架和混凝土框架两种结构体系搭配不同的外墙、楼板和内墙板等围护体系共计十种比较方案进行经济性研究,运用全寿命周期成本评价体系分别计算每种方案的初始成本、建设成本、维护成本、拆除成本和残值,发现装配式钢框架结构体系的全寿命周期成本均低于其他方案,装配式钢结构建筑具有更好的经济性与推广应用价值。  相似文献   

4.
装配式建筑是各种建筑部品经由一定的连接方式进行现场的装配而成的绿色建筑。由绿色建筑评价标准评价指标推 及装配式建筑,从全寿命周期出发分 5 个阶段分析其评价指标体系。通过主客观权重确定组合权重,模糊综合计算得到绿色 性能矩阵。应用价值工程,通过绿色性能矩阵、全寿命周期成本矩阵,探讨五阶段装配式建筑绿色性能与成本均衡关系,在 功能与成本上寻求价值的最优,为推广和建设装配式建筑提供最优配置的模型。  相似文献   

5.
利用碳排放系数法建立了建筑结构全寿命周期的碳排放模型,并以4幢建筑形式、结构形式各异的建筑作为算例进行推演。计算结果表明,建造阶段的碳排放量占到建筑结构全寿命周期总量的40%~50%,其中建材生产是主要排放源。在不同的结构形式之间,钢筋混凝土结构的排放量大大高出钢结构。针对以上结论,对结构的建造阶段提出了相应的减排措施,以逐步实现"绿色建造"。  相似文献   

6.
介绍绿色低碳建筑的概念并对绿色建筑的全寿命周期进行阶段划分,以便在不同阶段能对绿色低碳建筑的推行进行深入研究;建立绿色低碳建筑的评价指标体系,指出评价指标体系的适用范围,明确绿色低碳建筑的评价指标。指明发展绿色低碳建筑中会遇到的困难,并提出发展绿色低碳建筑的相应策略。  相似文献   

7.
张晨辉 《砖瓦》2021,(4):54-55,57
结合装配式建筑项目的特征及全寿命周期的实施内容,将装配式建筑成本风险评估分为5个阶段,在此基础上构建了5个一级和35个二级风险指标的装配式建筑项目全寿命周期成本风险评价指标体系。科学运用层次分析法并采用专家打分法获得各评估指标的评价值,将模糊综合评价法应用到装配式建筑成本全寿命周期的风险评估中,建立了装配式建筑全寿命周期成本风险评估模型,最后借助工程实例验证了该评估模型的可行性。  相似文献   

8.
人口、环境问题迫使人们对建筑的可持续发展提出新的发展方向。首先,明确绿色低碳建筑的基本内容,对其全寿命周期划分不同阶段,以便于深入研究并推行;其次,建立绿色低碳建筑的评价指标体系,指出评价指标体系的适用范围,进行绿色低碳建筑的效益分析,明确绿色低碳建筑的评价指标;最后,指明发展绿色低碳建筑中会遇到的困难,并提出发展绿色低碳建筑的相应策略。  相似文献   

9.
绿色建筑具有理念的新颖性、技术的复杂性和建设目标的长期性等特点,因而其风险较普通建筑更为突出。通过识别了绿色建筑在全寿命周期中存在的各类风险因素,全寿命周期包括决策、设计、施工、运行以及运营维护以上5个阶段。针对各阶段的风险特征提出相应的风险应对措施。研究结果可有效减少绿色建筑风险,为绿色建筑项目顺利实施提供经验。  相似文献   

10.
按照系统工程的观点,将绿色建筑的建造从策划、规划、设计、施工、运行到更新、拆除的全寿命周期看成一项系统工程。运用系统工程方法论的四维结构体系,构建绿色建筑全过程模型。该模型具体包括四个维度:时间维、逻辑维、环境维和知识维。时间维是指绿色建筑全寿命周期涉及的各个阶段及其主要工作内容;逻辑维是指在各个阶段所进行的逻辑思维步骤;知识维是指在绿色建筑各阶段所需要具备和运用的各种专业知识;环境维分析了绿色建筑的不同阶段所需要考虑的主要环境因素。形成一个对于绿色建筑整个过程具有指导作用的系统思维模型,以便在建筑的全寿命周期中科学地贯彻绿色建筑理念。  相似文献   

11.
Nowadays, the construction sector is more and more oriented toward the promotion of sustainability in all its activities. The goal to achieve is the optimization of performances, over the whole life-cycle, with respect to environmental, economic and social requirements. According to the latest advances, the concept of sustainability applied to constructions covers a number of branches such as life-cycle costing, ecology, durability and even structural design. Several procedures and design tools have been implemented in the framework of international research. Indeed the current trend in civil engineering research is moving towards life-time engineering, with the aim to implement integrated methodologies to consider as a whole all the sustainability requirements according to time-dependent multi-performance-based design approaches. Following a general introduction of the concept of sustainability applied to constructions, this paper presents an overview of life-time engineering methodologies according to the current state-of-the-art. In particular the methods currently received by International Standards are discussed. A special focus is devoted to the durability design of metal structures with respect to the degradation phenomena able to impair the structural capacity over time. Finally a proposal towards an integrated approach to life-time engineering design of steel structures and needs for further advances are presented.  相似文献   

12.
Competitiveness of steel construction and, in particular, steel and composite bridges, requires a broader view that encompasses the concepts of sustainability and life-cycle assessment in parallel with the classical structural and geotechnical issues. Also, from the economical viewpoint, the progressive transfer of operational duties from the National Road Authorities to private companies in the context of design, build and operate contracts, reinforces the need for an integrated approach.It is the purpose of the present paper: (i) to present an integrated methodology for a life-cycle and sustainability analysis (LCA and LCCA); and (ii) to apply such an integrated approach to a case study of a composite bridge. The proposed approach, besides structural considerations, contemplates environmental aspects (energy consumption, raw materials, and environmental impacts), economical aspects and a brief discussion of degradation and maintenance aspects. The case study consists of a three-span continuous bridge with spans of 27.2 m + 35.0 m + 27.2 m, thus totalling 89.40 m. Finally, some comparisons are presented between alternative solutions.  相似文献   

13.
Assessment of sustainability in the steel construction industry. The requirement for sustainability in construction results from deficits that currently exist in buildings in view of climate protection and energy efficiency. Systems for the assessment of sustainability will have a great impact on the competitiveness of construction and engineering services and on the real estate market. The new German assessment system gives clear quantitative reproducible sustainability criteria and is competitive in relation to other existing assessment systems. As energy efficiency is the dominant sustainability criterion for buildings, the paper demonstrates with examples from steel structures, how new innovative solutions for products and prefabricated components develop from integrating different aspects as structural resistance, serviceability and energy efficiency in the design. This leads to the concept of integrated design. Sustainable construction opens new fields for technology, markets, research and development in the steel construction field.  相似文献   

14.
This paper identifies key performance indicators (KPI) for infrastructure delivery and maps computational methods required to achieve sustainability objectives in developing countries. It builds on previous research that developed taxonomy of infrastructure sustainability indicators and computational methods, to propose an analytical decision model and a structured methodology for sustainability appraisal in infrastructure projects in a developing country like South Africa. The paper uses the ‘weighted sum model’ technique in multi-criteria decision analysis (MCDA) and the ‘additive utility model’ in analytical hierarchical process (AHP) for multi-criteria decision-making, to develop the model for computing the sustainability index—a crisp value for evaluating infrastructure design proposals. It discusses the development of the KPIs that are encapsulated within the analytical model. It concludes by discussing other potential applications of the proposed model and methodology for process automation as part of integrated sustainability appraisal in infrastructure design and construction in developing countries.  相似文献   

15.
以环境作用下混凝土结构的性能演化与控制为主线,对相关研究成果进行回顾与分析。结果表明,经过二十余年的研究,对环境介质的侵蚀机理、锈蚀混凝土构件的受力性能、结构的时变可靠度等基本理论问题有了清晰的认识;开发了钢筋锈蚀监测和检测、混凝土结构电化学和自修复技术;明确了结构全寿命设计与维护的基本概念。但要建立完善的结构全寿命设计与维护理论,未来尚应在研究方法上以不确定性的研究为主,在研究内容上聚焦时变性,充分关注环境作用的时空变异性和材料细观层面的非匀质性。  相似文献   

16.
The development of a generalised framework for assessing bridge life-cycle performance and cost, with emphasis on analysis, prediction, optimisation and decision-making under uncertainty, is briefly addressed. The central issue underlying the importance of the life-cycle approach to bridge engineering is the need for a rational basis for making informed decisions regarding design, construction, inspection, monitoring, maintenance, repair, rehabilitation, replacement and management of bridges under uncertainty which is carried out by using multi-objective optimisation procedures that balance conflicting criteria such as performance and cost. A number of significant developments are summarised, including time-variant reliability, risk, resilience, and sustainability of bridges, bridge transportation networks and interdependent infrastructure systems. Furthermore, the effects of climate change on the probabilistic life-cycle performance assessment of highway bridges are addressed. Moreover, integration of SHM and updating in bridge management and probabilistic life-cycle optimisation considering multi-attribute utility and risk attitudes are presented.  相似文献   

17.
以结构耐久性为主线,对现有工程结构全寿命设计理论框架进行重组,将结构的全寿命设计目标总结为可靠性目标和可持续性目标两方面,建立了包含安全性、适用性、耐久性、经济影响、环境影响和社会影响等设计目标的全寿命设计体系,并确定了基于结构动态性能的全寿命设计思路。通过建立结构可持续发展指标,解决了现有全寿命设计理论中概念模糊和指标重复的问题,并完善了全寿命成本的内涵。改进后的全寿命设计理论指标体系具有更为完善合理的构架,能够广泛适应各种结构类型和使用情况。  相似文献   

18.
工程结构设计以安全和可靠性为基本属性,在人本化关切层面不断进步,但对工程结构造成环境影响的忽视致使工程建设热潮成为环境退化诱因之一。近年兴起的生命周期评价研究致力改善这一现状,依此可建立工程结构的环境可适应性设计,实现生命周期环境影响调控,引导环境友好的工程进步。然而长期以来,工程结构设计与环境影响设计的研究进展处于两条近乎平行的轨道,两类单向设计在实践中常相互制约。工程结构与环境系统的同步可持续是土木工程可持续发展的必然要求,因而亟需构建结构与环境相容共生理论体系。基于此,提出可持续性作为结构设计的控制属性,给出可靠性满足的前提下,工程结构对环境影响在环境系统中的可承受程度。通过建立基本耦合关系和动态相容耦合关系,关联可靠性与可适应性,反映结构-环境共生体的动态反馈影响机制,构建双向设计的基本路径。进一步,定义碳强度和碳容度,提出可持续性目标选取与简化实现建议,列出多层次操作要点,为绿色建造提供理论基础。  相似文献   

19.
Structural systems are under deterioration due to ageing, mechanical stressors, and harsh environment, among other threats. Corrosion and fatigue can cause gradual structural deterioration. Moreover, natural and man-made hazards may lead to a sudden drop in the structural performance. Inspection and maintenance actions are performed to monitor the structural safety and maintain the performance over certain thresholds. However, these actions must be effectively planned throughout the life-cycle of a system to ensure the optimum budget allocation and maximum possible service life without adverse effects on the structural system safety. Life-cycle engineering provides rational means to optimise life-cycle aspects, starting from the initial design and construction to dismantling and replacing the system at the end of its service life. This paper presents a brief overview of the recent research achievements in the field of life-cycle engineering for civil and marine structural systems and indicates future directions in this research field. Several aspects of life-cycle engineering are presented, including the performance prediction under uncertainty and optimisation of life-cycle cost and intervention activities, as well as the role of structural health monitoring and non-destructive testing techniques in supporting the life-cycle management decisions. Risk, resilience, sustainability, and their integration into the life-cycle management are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号