首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of biogas-fed solid oxide fuel cell (SOFC) systems utilizing different reforming agents (steam, air and combined air/steam) has been investigated via thermodynamic analysis to determine the most suitable feed. The boundary of carbon formation was first calculated to specify the minimum amount of each reforming agent necessary to avoid carbon formation. The SOFC performance (electrical efficiency and power density) was determined at different biogas compositions and reforming agent:biogas ratios. The SOFC performance is better when the methane content in the biogas is higher. Steam is considered to be the most suitable reforming agent in this study as the steam-fed SOFC offers much higher power density than the air-fed SOFC although its electrical efficiency is slightly lower. When steam is added in the air-fed SOFC as in the case of the co-fed SOFC, the power density can be improved but the electrical efficiency becomes lower compared with the case of the air-fed SOFC. Finally, in order to improve the electrical efficiency of the steam-fed SOFC, the biogas split option was proposed. It was found that a higher electrical efficiency can be achieved. In addition, although the power density is lowered by this operation, the value is still higher than the case of the air-fed SOFC.  相似文献   

2.
La0.8Sr0.2CrO3 based Ru catalysts were studied as potential new anodic materials for Solid Oxide Fuel Cells directly fed with methane and operating at intermediate temperature under water deficient conditions. Two kinds of materials very close in composition were obtained following two different preparation procedures. Catalyst samples were characterized by physicochemical methods (XRD, SEM, BET and Chemical Analysis) and studied in methane steam reforming under water deficient conditions. Carbon formation during catalytic testing was studied by temperature programmed oxidation (TPO). Both types of catalysts were found very active and resistant to carbon formation. The unusual oscillatory behavior of the catalytic activity observed for one type of catalyst was discussed.  相似文献   

3.
Mathematical model based on the thermodynamic modeling of gaseous mixtures is developed for SOFC with internal steam reforming of methane. Macroscopic porous-electrode theory, including non-linear kinetics and gas-phase diffusion, is used to calculate the reforming reaction and the concentration polarization. Provided the data concerning properties and costs of materials the model is fit for wide range of parametric analysis of thermodynamic cycles including SOFC.  相似文献   

4.
In the steam gasification of biomass, the additive effect of noble metals such as Pt, Pd, Rh and Ru to the Ni/CeO2/Al2O3 catalyst was investigated. Among these noble metals, the addition of Pt was most effective even when the loading amount of added Pt was as small as 0.01 wt.%. In addition, the catalyst characterization suggests the formation of the Pt–Ni alloy over the Pt/Ni/CeO2/Al2O3.  相似文献   

5.
Creation of an autothermal system by coupling an endothermic to an exothermic reaction demands the matching of the thermal requirements of the two reactions. The application under study is a solid oxide fuel cell (SOFC) with indirect internal reforming (IIR) of methane, whereby the endothermic steam reforming reaction is thermally coupled to the exothermic oxidation reactions. A steady-state model of an IIR-SOFC has been developed to study the mismatch between the thermal load associated with the rate of steam reforming at typical SOFC temperatures and the local amount of heat available from the fuel cell reactions. Results have shown a local cooling effect, undesirable for ceramic fuel cells, close to the reformer entrance. The system behaviour towards changes in catalyst activity, fuel inlet temperature, current density, and operating pressure has been studied. Increasing the operating pressure is shown to be an effective way of reducing both the local cooling caused by the reforming reactions and the overall temperature increase across the cell. Simulations for both counter-flow and co-flow configurations have been performed and compared.  相似文献   

6.
    
Biomass gasification experiments on pilot/demo scales have some issues related to the early deactivation of catalysts during the tar removal step. To avoid this problem, a method was developed in a bench‐scale micro activity unit using toluene as tar model compound in order to suppress this effect. The runs were performed with a commercial Pt catalyst supported on Ce‐Zr‐Al, alternating periods of regeneration and reactivation steps with steam, nitrogen, and hydrogen. The toluene steam reforming using operational cycles in order to reach a long‐term run provided useful information for pilot plant studies, mainly reactivation and regeneration procedures. The main concern on tar removal studies by steam reforming is the catalyst deactivation due to the presence of polyaromatic and olefinic compounds on the material pores, which is produced during biomass gasification.  相似文献   

7.
This paper addresses an integrated design of paraffin-reformer, gas separations and the electricity production with a solid oxide fuel cell (SOFC). The overall design consists of three modules. First module is a system of paraffin reformer. In this module, the paraffin feed stream is to send to a steam-reformer. In the second module, the gas separations method illustrated is the combination of a methane-permeable membrane with a pressure-swing adsorption (PSA). In the third module, the purified hydrogen is fed to the SOFC unit. To be energy efficient, this paraffin-fueled SOFC system is designed with the consideration of heat integration. The intent of this paper is to provide a possible, alternative way of cogeneration systems for refinery and petrochemical plants.  相似文献   

8.
The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean and renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports on an experimental study of the effects of carbon formation on the anodes of SOFC button cells from synthetic model tars arising from the gasification of biomass material. Furthermore the paper evaluates appropriate model tars to study the effects of typical biomass gasification tars on SOFC operation. The anode material used in this work was a 60:40 wt.% NiO/YSZ cermet, which was tested in a 15% H2 gas mixture containing a concentration of 15 g/Nm3 of different biomass gasification model tars. Model tars included benzene and toluene representing the simplest and most predominant of biomass gasification tars, and a tar mix consisting of higher molecular weight tars such as naphthalene, pyrene, and phenol. It was found that carbon formation in dry conditions significantly damaged the anode of the fuel cell resulting in decreased cell performance and excessive anode polarization resistances. The higher reactivity of benzene compared to other model tars led to higher levels of carbon formation on reduced Ni-O catalysts. Different types of carbon were formed depending on the operating temperature of the SOFC.  相似文献   

9.
Biodiesel (alkyl ester of rapeseed oil) is prepared using various, methyl, ethyl and butyl alcohols through the transesterification process. Sodium hydroxide and sulfuric acid are used as catalyst for methyl alcohol, ethyl alcohol and butyl alcohol respectively. Biodiesel-water formulations are formulated using water and emulsifiers like sodium lauryl sulphate (SLS) and SPAN 80 in a high shear mixer. The formulations are tested at 800 °C as fuel for internal reforming in solid oxide fuel cells (SOFCs). The formulations based on methyl and butyl esters require the use of emulsifiers to prepare stable emulsions, while ethyl esters are able to form stable emulsions without emulsifiers. The decrease in the biodiesel concentration of formulation does not have any effect on the power density of the ethyl ester formulation. Fuel cells fuelled with 20% formulations lasted longer than 50% formulations in all the formulations tested as result of increase in steam carbon ratio resulting in effective removal of carbon deposited on the anode surface. Butyl ester formulations exhibited the worst performance in both types of formulation tests. The best performance was exhibited by 20% ethyl formulation in terms of life of the cell but 50% methyl ester formulations exhibit the highest power density.  相似文献   

10.
The performances of solid oxide fuel cells (SOFCs) fed by different types of feed, i.e. biogas, biogas-reformed feed, methane-reformed feed and pure hydrogen, are simulated in this work. Maximum temperature gradient and maximum cell temperature are regarded as indicators for operation viability investigation whereas power density and electrical efficiency are considered as performance indicators. The change in operating parameters, i.e. excess air, fuel feed rate and operating voltage, affects both the performance and operation viability of SOFC, and therefore, these operating parameters should be carefully selected to obtain best possible power density and reasonable temperature and temperature gradient. Pure hydrogen feed offers the highest SOFC performance among the other feeds. Extremely high excess air is required for SOFC fed by biogas to become operation viable and, in addition, its power density is much lower than those of SOFCs fed by the other feeds. Methane-reformed feed offers higher power density than biogas-reformed feed since H2 concentration of the former one is higher.  相似文献   

11.
A model predicting the temperature field in the porous reforming anode of a solid oxide fuel cell is presented herein. The model is based on mass, momentum, and heat balances of a chemically reacting mixture of gases within the porous matrix of the anode. The important novel characteristic of the model is the consideration of the both internal reforming and electrochemical reactions in the bulk of the porous anode. The electronic and ionic currents in the anodes are calculated utilizing the solution of the Poisson equations for the electric potentials in the porous medium. The transfer current density is described by the Butler–Volmer equation.The model is applied to investigate the temperature field and the reactive flow in button-shaped fuel cells with uniform and graded (multi-layer) anodes composed of Ni and YSZ particles with methane/water vapor mixture used as the fuel. The maximum temperature difference between the hot and cold spots of the anodes is found to reach up to 200 K. The results indicate that the generation of Joule heating caused by the current passing through the anode and the activation losses are the dominating heat sources compared to the gas-water shift and electrochemical reactions.  相似文献   

12.
Thermo-conversion of biomass is one of the leading near-term options for renewable production of hydrogen and has the potential to provide a significant fraction of transportation fuel required in the future. We propose a two-step process that starts with fast pyrolysis of biomass, which generates high yields of a liquid product, bio-oil, followed by catalytic steam reforming of bio-oil to produce hydrogen. A major advantage of such a concept results from the fact that bio-oil is much easier and less expensive to transport than either biomass or hydrogen. Therefore, the processing of biomass and the production of hydrogen can be performed at separate locations, optimized with respect to feedstock supply and to hydrogen distribution infrastructure. This approach makes the process very well suited for both centralized and distributed hydrogen production. This work demonstrates reforming of bio-oil in a bench-scale fluidized bed system and provides hydrogen yields obtained using several commercial and custom-made catalysts.  相似文献   

13.
Catalytic gasification of a woody biomass, Japanese cypress, was investigated under a prepared nickel-loaded brown coal (LY-Ni) char in a two-stage fixed-bed reactor. The nickel-loaded brown coal was prepared by ion-exchange method with a nickel loading rate of 8.3 wt.%. Nickel species dispersed well in the brown coal, and the LY-Ni char via devolatilization at 600 °C showed a great porous property with a specific surface area of 382 m2 g− 1.The LY-Ni char was confirmed to be quite active for the Japanese cypress volatiles gasification at a relatively low-temperature range from 450 to 650 °C. For example, at 550 °C, 16.6 times hydrogen gas and 6.3 times total gases were yielded from the catalytic steam gasification of Japanese cypress volatiles under the LY-Ni char, compared with the case of non-catalyst. The biomass tar decomposition showed a dependence on catalyst temperatures. When the catalyst temperature was higher than 500 °C, Japanese cypress tar converted much efficiently, high gas yields and high carbon balances were obtained.  相似文献   

14.
This work is aimed at understanding the reaction mechanism of propane internal reforming in the solid oxide fuel cell (SOFC). This mechanism is important for the design and operation of SOFC internal processing of hydrocarbons. An anode-supported SOFC unit with Ni-YSZ anode operating at 800 °C was tested with direct feeding of 5% propane. CO2 reforming of propane was carried out in a reactor with Ni-YSZ catalyst to simulate internal propane processing in SOFC. The performance of this direct propane SOFC is stable. The C specie formed over the anode functional layer of SOFC can be completely removed. The major gas products of SOFC are H2, CO, CH4, C2H4 and CO2. Pseudo-steady-state internal processing of propane in the anode catalytic layer of SOFC is associated with a CO2/C3H8 molar ratio of about 1.26 and basically CO2 reforming of propane. CO2 dissociation to produce the O species to oxidize the C species from dehydrogenation and dissociation of propane and its fragments should be the major reaction during CO2 reforming of propane.  相似文献   

15.
Behdad Moghtaderi 《Fuel》2007,86(15):2422-2430
Low temperature catalytic steam gasification of biomass is being investigated around the world as an environmentally friendly alternative to the existing techniques for hydrogen production. The aim of the present investigation was to gain a fundamental understanding about the catalytic steam gasification of some species under low temperature conditions. The research, in particular, focused on the role and relative importance of controlling parameters, such as reaction temperature and the heating rate on the composition of the products. It was found that higher temperatures and steam flow rates increased the gas yield. A relatively low reaction temperature of 600 °C and a high steam content of about 90% showed the strongest tendency for maximising the hydrogen production.  相似文献   

16.
Steam reforming of hydrocarbons such as natural gas is an attractive method of producing the hydrogen fuel gas required by fuel cells. It may be carried out external to the fuel cell or internally. The two types of fuel cell in which internal reforming is most appropriate are the molten carbonate (MCFC), operating at ca. 650°C and the solid oxide (SOFC) which currently operates above 800°C. At such temperatures, the heat liberated by the electrochemical reactions within the cell can be utilised by the endothermic steam reforming reaction. This paper reviews some of the catalytic aspects of internal reforming in these two types of cell. In the MCFC the major catalyst issue is that of long term activity in the presence of a corrosive alkaline environment produced by the cell's electrolyte. In Europe, this is being addressed by British Gas and others, in a programme part-funded by the European Commission. In this programme, potential catalysts for the direct internal reforming MCFC were evaluated in ‘out-of-cell’ tests. This has led to the demonstration of a 1 kW proof-of-concept DIR-MCFC stack and the start of a European ‘Advanced DIR-MCFC’ project. For the SOFC, it has been shown that state-of-the-art nickel cermet anodes can provide sufficient activity for steam reforming without the need for additional catalyst. However, anode degradation may occur when steam reforming is carried out for long periods. New anode materials could therefore offer significant benefits.  相似文献   

17.
This work analyses the performance of hybrid power plants based on solid oxide fuel cells integrated with micro-gas turbines (SOFC-MGT). Internally and externally reformed SOFC-MGT systems fuelled with methane, methanol, ethanol and DME have been compared. The results show that simply replacing methane with methanol, ethanol or DME in internally reformed SOFC-MGT systems slightly reduces efficiency and power output. In contrast, using methanol and DME in externally reformed SOFC-MGT hybrid plants can lead to efficiency improvement with respect to internally reformed hybrid plants fuelled by methane, especially for the higher values of the fuel utilization factor (higher than about 70% for methanol and 80% for DME). Finally, the main operating parameters of the fuel reforming section (temperature and steam-to-carbon ratio, SCR) must be carefully chosen in order to optimise the hybrid plant performance.  相似文献   

18.
Catalytic performance of Ni/CeO2/Al2O3 catalysts prepared by a co-impregnation and a sequential impregnation method in steam gasification of real biomass (cedar wood) was investigated. Especially, Ni/CeO2/Al2O3 catalysts prepared by the co-impregnation method exhibited higher performance than Ni/Al2O3 and Ni/CeO2/Al2O3 prepared by the sequential impregnation method, and the catalysts gave lower yields of coke and tar, and higher yields of gaseous products. The Ni/CeO2/Al2O3 catalysts were characterized by thermogravimetric analysis, temperature-programmed reduction with H2, transmission electron microscopy and extended X-ray absorption fine structure, and the results suggested that the interaction between Ni and CeO2 became stronger by the co-impregnation method than that by sequential method. Judging from both results of catalytic performance and catalyst characterization, it is found that the intimate interaction between Ni and CeO2 can play very important role on the steam gasification of biomass.  相似文献   

19.
    
《Ceramics International》2017,43(10):7647-7652
The purpose of this research is to develop interconnect and cathode materials for use in solid oxide fuel cells (SOFCs) which demonstrate desired properties of outstanding sintering properties, high electrical conductivity, and excellent chemical stability at high temperatures. Five different perovskite oxides of lanthanum in combination with chromium, iron, cobalt and nickel oxides powders, i.e. LaCr0.7Co0.1Fe0.1Ni0.1O3(LCr7CFN), LaCo0.7Cr0.1Fe0.1 Ni0.1O3(LCo7CFN), LaFe0.7Cr0.1Co0.1Ni0.1O3(LFe7CCN), LaNi0.7Cr0.1Co0.1Fe0.1O3(LNi7CCF), and LaCr0.25Co0.25Fe0.25Ni0.25O3(LCCFN), were synthesized through the Pechini method. XRD results show that all materials are in single phase, either rhombohedral or orthorhombic crystal structure. The resulting powders were able to be sintered to a high relative density at a temperature of 1400 °C for 2 h in air. The electrical conductivity of the sintered sample was measured and evaluated from 300 °C to 800 °C. The LCCFN sample appears to have the best combination of sintering property (approximate 94% relative density) and electrical conductivity (88.13 Scm−1 at 800 °C).  相似文献   

20.
In the present study, a detailed thermodynamic analysis is carried out to provide useful information for the operation of solid oxide fuel cells (SOFC) with direct internal reforming (DIR) fueled by ethanol. Equilibrium calculations are performed to find the ranges of inlet steam/ethanol (H2O/EtOH) ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1500 K. Two types of fuel cell electrolytes, i.e., oxygen-conducting, and hydrogen-conducting electrolytes, are considered. The key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum H2O/EtOH ratio for which the carbon formation is thermodynamically unfavored decreases with increasing temperature. The hydrogen-conducting electrolyte is found to be impractical for use, due to the tendency for carbon formation. With a higher extent of the electrochemical reaction of hydrogen, a higher value of the H2O/EtOH ratio is required for the hydrogen-conducting electrolyte, whereas a smaller value is required for the oxygen-conducting electrolyte. This difference is due mainly to the water formed by the electrochemical reaction at the electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号