首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
为实现大体积气体中微量放射性气体Kr、Xe同位素的测量,须将混合气体进行浓集并将目标气体吸附于10 mL左右的活性炭源盒中。本实验对混合气体中各组分在活性炭分离柱上的吸附性能进行研究,建立了通过去除其他杂质气体、浓集大体积气体制备放射性Kr和Xe活度源的方法。根据反应堆流出气体和核爆可能生成的气体组分,配制了模拟气体,使用活化的4A分子筛对其中的水和CO_2进行模拟去除,获得了流程中去除水和CO_2的实验条件;选择5个低温点(273、264、255、246、238 K),在低温活性炭柱上对H_2、CO、CH_4、Kr和Xe的吸附特性进行研究,测定了各气体在不同温度下的吸附穿透曲线。结果表明,室温下4A分子筛对水和CO_2有较好的吸附效果。低温下,H_2、CO不易在活性炭表面吸附;CH_4、Kr吸附性质相似;Xe吸附能力较强。低温下难以去除的CH_4可在高温下氧化去除。因此,可根据混合气体中各组分性质的不同实现杂质气体的去除和目标气体Kr、Xe的回收测量。  相似文献   

2.
活性炭纤维在低温下对Kr的静态吸附   总被引:1,自引:1,他引:1  
研究了粘胶基活性炭纤维(Viscose-based ACF,VACF)、沥青基活性炭纤维(Pitch-based ACF,PACF)和颗粒活性炭(Grain activated carbon,GAC)在201K时对Kr的静态吸附等温线和吸附速度,并与同样条件下VACF对Xe的吸附进行了比较。结果表明:在201K条件下,VACF对Kr,Xe具有基本相同的平衡吸附容量,但VACF对Kr的吸附速度要大于对Xe的吸附速度。  相似文献   

3.
^99Tc在活性炭上的吸附行为   总被引:3,自引:0,他引:3  
一、前言在高放废物处置中,~(99)Tc是长半衰期的裂变产物(T_(1/2)=2.12×10~5a),多以阴离子TcO_4~-形式存在于溶液中。已经证明,一般地质介质及回填材料对锝的吸附很差,因此,研究对锝有较高吸附性的材料已经引起人们的重视。其中,人工材料活性炭对锝的吸附也进行了研究,结果表明,活性炭对锝有较高的吸附性,特别是椰壳活性炭对锝的吸附性更好。  相似文献   

4.
阐述了活性炭对^85Kr吸附作用的测量原理及方法,并针对在一定的抽气速度的情况下,给出了取样时间与活性炭计数率的关系曲线和^85Kr的浓度与活性炭计效率的关系曲线。  相似文献   

5.
利用脉冲进样气相色谱法研究椰壳活性炭常温吸附Xe的性能,获得了氙在椰壳活性炭上的吸附系数与温度、气体流速、Xe浓度的关系。研究结果表明:在20~50℃温度范围内,温度每升高1℃,Xe的吸附系数下降3%;气体流速在5~10cm/s范围内,Xe的吸附系数不受气体流速影响;气流中Xe浓度小于10-3mL/mL时,其吸附系数亦不受影响。  相似文献   

6.
建立了一种简便的静态吸附系数的测量方法,并对相关活性炭吸附氡的静态吸附系数进行测量,将测量结果与相同条件下动态吸附法测量的相应结果进行对比。从比较结果来看,静态吸附系数K_s与动态吸附系数K_d的比值恒定,接近于1。这种方法可用于活性炭种类的筛选和吸附条件的初期探索,可为最终活性炭吸附的工程条件的选择和确定节省大量的初期工作。此外,此方法也可为其他吸附材料对氡吸附系数的初步测量及相关测量研究提供一种简单快速的测定方法。  相似文献   

7.
氙在活性炭和碳分子筛上的动态吸附性能   总被引:4,自引:0,他引:4  
为筛选氙的吸附剂,研究了氙在活性炭和碳分子筛(CMS)上的动态吸附性能,探讨了氙浓度、气流比速、温度、载气、压力和CO2等对氙动态吸附系数的影响。结果表明,CMS1对氙的吸附能力最强,其次为CMS2;低于10-5mol/L的氙浓度、实验气流比速以及5×10-5mol/L以下的CO2浓度对氙动态吸附系数影响不明显;载气种类和高于5×10-5mol/L的CO2浓度对氙的动态吸附系数有一定影响;吸附温度和吸附压力对氙动态吸附系数影响较大。提高吸附剂吸附氙能力的方法主要是降低吸附温度和增加吸附压力。  相似文献   

8.
为了防止室内空气氡危害人体健康,采用被动式活性炭盒法,利用带铅室的低本底NaI (Tl)闪烁探测器测量活性炭样品的γ能谱总净计数,分别研究活性炭的吸附时间、干燥性、用量和放置位置对氡吸附量的影响,精确测量室内空气中的氡浓度。结果表明,最佳吸附时间为3 d或4 d;干燥的活性炭对氡的吸附能力强,前3 d,烘干活性炭的吸附量大于未烘干活性炭,最终两者吸附量相当;当氡在活性炭中的渗透深度小于活性炭的装填深度时,不同用量的活性炭对氡的吸附量相当,随着渗透深度增大,活性炭用量多的吸附量大;在氡浓度不均匀的密闭室内,活性炭放置位置对氡的吸附量无影响。综上所述,采用活性炭盒法测量室内空气氡浓度,应采用烘干、适量的活性炭,吸附时间为3 d或4 d,且不需考虑活性炭在室内的放置位置。  相似文献   

9.
地下低本底实验室在创造低放射性本底实验环境方面有着很大的降氡需求,为此本文研发了一种原理性活性炭降氡装置,以筛选出的KC-6型活性炭为研究对象,使用连续进气法,在-50~25℃温度范围内测量了活性炭对氡的动力学吸附系数。实验结果表明,在该温度范围内,活性炭的动力学吸附系数与绝对温度呈指数关系,降低活性炭的温度能显著提高活性炭对氡的吸附性能,在-48℃的温度条件下,活性炭的动力学吸附系数达171.4L/g,较室温条件下增加了20倍以上。依据本实验获得的实验数据,计算出KC-6型活性炭的吸附热Q=(20.5±1.7)kJ/mol。  相似文献   

10.
活性炭对惰性气体动态吸附影响因素的讨论   总被引:2,自引:0,他引:2  
探讨了活性炭对惰性气体的动态吸附系数的多种影响因素。由文献调研可知,一定范围的气流比速与一般应用环境的CO2浓度对动态吸附系数的影响可以忽略;系统压力越高动态吸附系数越大;温度越高、环境相对湿度越大动态吸附系数越小;在不能达到吸湿平衡的情况下,用活性炭含水量代替相对湿度作为活性炭吸附惰性气体的影响因素更符合实际。  相似文献   

11.
活性炭高压吸附氡气技术研究   总被引:2,自引:1,他引:1  
加压是提高活性炭吸氡效率的有效途径之一,但加压又伴随着不利于氡吸附的温湿度变化。为此设计并构建了消除这些不利变化的活性炭高压吸附装置,模拟了5种活性炭吸附环境,研究了动态吸附系数与压力、温度、湿度的关系。实验结果表明,增加系统压力并降低相对湿度和吸附温度,活性炭吸附氡气的动态吸附系数得到成倍的提高,高压低温低湿状态(0.6 MPa,0 ℃,20%~24%)的动态吸附系数是常压常温常湿状态(0.1 MPa,28 ℃,54%~65%)的5倍。此研究为今后开展加压吸氡技术相关影响因素的系统研究和高效除氡装置的研制打下了基础。  相似文献   

12.
选用六组不同类型的活性炭,通过室外对土壤氡的吸附饱和实验,研究了活性炭对低射气土壤氡的吸附行为。实验结果表明:不同类型的活性炭对土壤氡的吸附饱和时间不同,均远小于30 d,吸附性能较好的椰壳活性炭在第八天即达到吸附饱和;不同类型活性炭的吸附饱和浓度差异也较大。因此,在低射气区进行活性炭吸附氡气测量时,应选择小粒径的椰壳活性炭作为吸附载体。  相似文献   

13.
Viscose-based activated carbon fibers(VACFs)were treated by a dielectric-barrier discharge plasma under the feed gas of N_2.The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO_2.The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM,BET,FTIR,and XPS,and the adsorption capacities of VACFs for SO_2 were also compared and discussed.The results show that after the plasma treatment,the external surface of VACFs was etched and became rougher,while the surface area and the total pore volume decreased.FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably.The adsorption characteristic of SO_2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification,which is beneficial to the adsorption of SO_2.  相似文献   

14.
优质椰壳活性炭被广泛用作氡、碘等气载放射性的吸附材料。为提高其吸氡能力,本文采用液氮浸泡、液氮浸泡与蒸发并行和低温氮气冲洗的活性炭改性方法,分别对优质椰壳活性炭进行了改性研究,并改进了静态法测量材料对氡的吸附系数的计算方法。结果表明,连续液氮浸泡与蒸发对活性炭改性的效果最好,改性活性炭对氡的吸附系数随连续液氮浸泡与蒸发次数的增加呈先增大后减小的规律,连续改性4次的改性效果最佳,改性活性炭的吸附系数提高了36%;液氮浸泡对活性炭改性也有一定效果,改性活性炭对氡的吸附系数最大可提高15%;低温氮气冲洗对活性炭改性没有效果。活性炭改性前后样品的BET表征结果表明,改性活性炭对氡的吸附能力的提高与054 nm孔径的微孔比表面积增加有明显的正相关性。该方法具有改性工艺简单、周期短、成本较低等优点。  相似文献   

15.
Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.  相似文献   

16.
Lithium aluminate (LiAl02) is one of the probable candidates for tritium breeding material because of its potential to give a fair tritium breeding ratio, stability at high temperature and stability in atmosphere containing water vapor. Clarification of the adsorption performances of water on LiAl02 is important for optimization of the way to recover bred tritium from LiAl02 and for estimation of the tritium inventory in the breeding blanket and for quantification of the hydrogen isotope exchange reaction. The amount of water captured on LiAl02 was studied in the temperature range of 373~1,100K using the breakthrough curve method, and adsorption isobar and isotherm of water on LiAl02 were proposed based on the data obtained. The water capture phenomena of LiAl02 was attributed to the dissociative chemisorption, and the apparent activation energy was determined to be 32.2 kJ/mol.K. The tritium inventory by sorption for LiAl02 was compared with that for Li20.  相似文献   

17.
The pentachlorophenol(PCP)adsorbed granular activated carbon(GAC)was treated by dielectric barrier discharge(DBD)plasma.The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N_2 adsorption,thermogravimetric,scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS)and gas chromatographymass spectrometry(GC-MS).The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models,respectively.The results indicate that the types of N_2 adsorption isotherm of GAC are not changed by DBD plasma,while the specific surface area and pore volume increase after DBD plasma treatment.It is found that the weight loss of the saturated GAC is the highest,on the contrary,the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC.The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma,and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology.The GC-MS identification of by-products shows that two main dechlorination intermediate products,tetrachlorophenol and trichlorophenol,are distinguished.The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption,and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号