首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 89 毫秒
1.
LM-BP神经网络在大坝变形预测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
为了对大坝进行切实有效的监控,需要建立一个良好的大坝预测模型。针对传统BP(Back-Propagation)神经网络存在的收敛速度慢和泛化能力弱等缺陷,利用LM-BP(Levenberg Marquardt Back Propagation)算法对大坝变形进行预测,并根据丹江口大坝1996和1997两年的变形观测数据,对大坝挠度预测结果进行分析。结果表明,所建立的LM-BP神经网络的预测精度和收敛速度明显提高。  相似文献   

2.
针对门诊量波动幅度较大的时间序列预测问题,先采用经验模态分解(EMD)将非线性较强的原始数据进行分解,然后通过极限学习机(ELM)将分解后的各个序列分量进行建模,最后将各个分量的预测值相加得出最终结果。将BP神经网络、ELM两个单一模型与EMD-ELM组合模型进行对比验证,实验结果表明组合模型的精准度明显好于两个单一模型。  相似文献   

3.
为降低负荷序列的复杂性,利用EMD分解方法得到不同的分量.为降低训练时间和减小分量逐个预测所带来的累计误差,利用分量过零率大小将分量重构为高频分量和低频分量,利用TCN模型预测负荷的高频分量,利用极限学习机ELM预测负荷低频分量.通过实验将所提模型EMD-TCN-ELM分别与3个单模型TCN、ELM、LSTM和3个混合模型EMD-TCN、EMD-ELM、EMD-LSTM比较,其MAPE分别降低0.538%, 1.866%, 1.191%,0.026%, 1.559%, 0.323%,所提模型的预测精度最高.且所提模型在预测精度前3的模型中训练时间最短,验证了所提模型在负荷预测精度和训练时间方面的优越性.  相似文献   

4.
于琼  田宪 《计算机工程与科学》2021,43(10):1817-1825
为解决复杂系统中非线性时间序列预测模型构建效率低、预测精度低的问题,提出基于组合模型的HURST-EMD预测算法.采用EMD算法将非线性时间序列分解为代表原始序列特征的各个IMF,然后引入赫斯特(Hurst)指数将同类的IMF整合为新的分量,最后选用LS-SVR-ARIMA模型进行组合预测.在该算法中,设计了序列分类整合等过程,优化了建模的计算量,构建了高效精准的预测模型.为验证模型的有效性,采用上证指数公共数据集和真实交通流数据进行检验,实验结果表明,改进的基于组合模型的HURST-EMD预测算法在提高预测效率的同时具有更好的预测精度.  相似文献   

5.
针对港口集装箱吞吐量数据的复杂性特征,提出基于优化变分模态分解(OVMD)和核极限学习机(KELM)的集装箱吞吐量短期混合预测模型。首先,用汉佩尔辨识法(HI)剔除原始时间序列中的异常值,并把预处理之后的序列通过OVMD分解为多个特征明显的子模态。然后,为提高预测效率,将分解后的子模态按照样本熵(SE)值的大小分成高频低幅、中频中幅和低频高幅三类;同时,借助KELM中携带的小波、高斯和线性核函数捕捉具有不同特征子模态的趋势。最后,把所有子模态的预测结果线性相加得到最终的预测结果。以深圳港的月度集装箱吞吐量数据为样本进行实验,所提模型的平均绝对误差(MAE)达到0.914?9,平均绝对百分比误差(MAPE)达到0.199%,均方根误差(RMSE)达到7.886?0,决定系数(R2)为0.994?4。与四种对比模型相比,所提出的模型在预测精度和效率上都具有一定的优势,同时克服了传统互补集成经验模态分解(CEEMD)和集成经验模态分解(EEMD)中容易出现的模态混叠问题以及极限学习机(ELM)中存在过拟合等问题,具有一定的实际应用潜力。  相似文献   

6.
极限学习机(ELM)是一种新型单馈层神经网络算法,在训练过程中只需要设置合适的隐藏层节点个数,随机赋值输入权值和隐藏层偏差,一次完成无需迭代.结合遗传算法在预测模型参数寻优方面的优势,找到极限学习机的最优参数取值,建立成都双流国际机场旅客吞吐量预测模型,通过对比支持向量机、BP神经网络,分析遗传-极限学习机算法在旅客吞吐量预测中的可行性和优势.仿真结果表明遗传-极限学习机算法不仅可行,并且与原始极限学习机算法相比,在预测精度和训练速度上具有比较明显的优势.  相似文献   

7.
李军  李大超 《信息与控制》2016,45(2):135-141
针对短期风电功率预测,提出一种基于自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-模糊熵(FE)的核极限学习机(extreme learning machine with kernels,KELM)组合预测方法.CEEMDAN方法在信号分解的每一阶段都添加特定的白噪声,通过计算唯一的余量信号以获取各个模态分量,与EEMD(ensemble empirical mode decomposition)方法相比,其分解过程是完整的.为降低信号非平稳性对预测精度的影响及减少计算规模,采用CEEMDAN-模糊熵(FE)方法将信号分解为具有不同复杂度差异的子序列,然后分别构建相应的KELM预测模型,最后对预测结果进行合成.将CEEMDAN-FE-KELM方法应用于某地区的短期风电功率预测,在同等条件下,与单一的KELM方法及KELM的组合预测方法进行实验对比,结果证明该方法更有效.  相似文献   

8.
大坝变形的时空演变预测分析有助于大坝管理人员及时掌握大坝空间的整体变形状态。目前,大坝变形预测研究分为两个方面:1)通过仅对分布变形仪器部位进行时间序列预测,得出下一时刻的变形值(如BP神经网络);2)利用周围变形数据进行空间插值,得到当前时刻未分布仪器点的变形值。单独使用上述任何一种方法都无法利用历史变形数据预测下一时刻未分布仪器部位的变形状况。针对该问题,结合空间预测模型时空克里金方法(STKri-ging,STK)与神经网络模型即BP神经网络及门限循环神经网络(Gated Recurrent Unit,GRU)各自的优势,构造了一种新型时空序列预测算法(BP-STK-GRU),实现了对未分布监测仪器部位的变形值预测。主要步骤包括:1)GRU优化单个测点的历史时间序列变形值;2)BP拟合测点下一时刻数据的整体趋势;3)利用STK拟合BP预测结果的稳定部分;4)结合空间插值及BP空间整体预测值,得出未分布仪器点的变形值。实验结果表明,所提方法是有效的,并且在对未知点的变形预测稳定性及精确度方面都有很好的表现。  相似文献   

9.
针对现有大坝变形预测模型的预测精度不高、BP神经网络的参数和结构很难确定且容易陷入局部极值等问题,通过引入小波变换理论把原始的大坝变形序列分解成多个子序列,然后对每个子序列使用头脑风暴优化算法(brain storm optimization,BSO)优化BP神经网络的参数和结构.同时,把差分变异思想引入BSO算法,建...  相似文献   

10.
卡尔曼滤波模型被广泛运用于大坝的变形预测,然而其参数的识别,尤其是状态和观测噪音协方差矩阵的识别,主要来源于工程经验和领域专家知识。因此提出一种自学习的参数识别方法,该方法基于历史数据,结合Monte Carlo和拒绝采样算法获取卡尔曼滤波参数。具体地,从训练样本中挑选出与真实值最接近的实测值对状态噪音进行估计,并通过计算它与总体误差的差值来确定观测噪音。实验表明,相比已有的同类方法,该方法的准确性更高,更适用于大坝变形预测。  相似文献   

11.
为控制控制混凝土生产成本,在混凝土拌和期限制抗压强度不足的缺陷构建产出,可以有效降低原料的浪费,是节能降耗的关键方法之一。针对混凝土抗压强度的传统测量方法严重滞后的问题,提出了基于贝叶斯优化极限学习机(BOA-ELM)的混凝土抗压强度预测方法。首先,分析了混凝土拌和过程中对抗压强度预测值实时获得的需求。以各物料的用量为分析基础,28天标准养护后混凝土抗压强度值为预测目标,设计了基于极限学习机的强度预测模型。其次,为进一步提高模型的稳定性以及准确行,提出基于贝叶斯优化的极限学习机模型,根据模型超参数的分布特征,以高斯过程作为超参的先验分布,预测误差最小化作为目标,寻找最优的模型超参。最后,在实际施工产生的C50标号混凝土数据集上测试文中模型,并对比分析了其他预测模型和寻优算法。结果表明,结合了贝叶斯优化的极限学习机预测模型相较于经典算法具有更高的预测准确性和模型训练的高效性。  相似文献   

12.
为有效地对工厂化水产养殖进行指导和管理,解决实际生产中水温数据预测精度低、稳定性差等问题,在分析水温影响因素的基础上,通过天气指数的计算对传感器采集的异常数据进行校正,进而提出一种遗传算法(GA)结合改进极限学习机(ELM)的池塘水温预测模型(GA-ELM)。在模型建立的过程中,采用Softplus对传统ELM的激活函数进行改进,在GA算法获取ELM最佳初始权值和偏置参数的基础上,对实现数据校正的池塘水温数据进行预测。将GA-ELM与BP神经网络和标准ELM网络模型进行对比,GA-ELM的预测指标MAE、MAPE和RMSE分别为0.1543、0.0054和0.1876,实验结果表明,GA-ELM模型有较好的预测性能,能高效、稳定地实现水温的预测。  相似文献   

13.
股票市场不仅是上市公司的重要融资渠道,也是重要的投资市场,股票预测一直受到人们的关注。为了充分利用来自不同股票价格的信息,提高股票的预测效果,提出一种多尺度股票价格预测模型TL-EMD-LSTM-MA(TELM)。TELM模型通过经验模态分解将收盘价分解为多个时间尺度分量,不同时间尺度分量震荡频率不同,反映了不同的周期性信息;根据分量的震荡频率选择不同方法进行预测,高频分量利用深度迁移学习的方法训练堆叠LSTM,低频分量利用移动平均法进行预测;将所有分量的预测值相加作为收盘价的最终预测输出。通过深度迁移学习训练的堆叠LSTM,包含来自不同股票的信息,具备更多行业或市场的知识,能有效降低预测误差。利用移动平均法预测低频分量,更有效捕获股票的总体趋势。对中国A股市场内500支股票以及上证指数、深证成指等指数进行预测,结果表明,与其他模型相比,TELM预测误差最低,拟合优度最高。根据TELM预测的股票收盘价模拟股票交易过程,结果表明TELM投资风险低、收益高。  相似文献   

14.
李栋  薛惠锋 《计算机科学》2018,45(9):271-278, 287
针对中长期降水量预测精度较低的问题,提出了由改进集合经验模态分解方法、最小二乘法、核极限学习机和改进的果蝇优化算法构成的混合模型来对区域年度降水量序列进行预测。首先,通过改进集合经验模态分解方法将非平稳降水量时间序列分解为多个分解项。然后,根据不同分解项的特性分别采用最小二乘法和核极限学习机对其进行预测。由于核极限学习机均存在一定的参数敏感特性,因此提出使用改进的果蝇优化算法来对核极限学习机的相关参数搜索寻优,以提高其预测精度。最后,将各分解项的预测结果叠加,从而形成最终预测结果。以广东省7个地市1951-2015年的年度降水量为例,对所提方法进行了验证,结果表明:相比于自回归移动平均模型和核极限学习机模型,混合模型预测具有更高的预测精度。  相似文献   

15.
基于经验模态分解(EMD)方法对染噪混沌时间序列进行预测时,模态混叠会降低预测精度和最大可预测时间.针对这一问题,将复数据经验模态分解(BEMD)引入到染噪混沌时间序列的预测,在BEMD过程中以高斯白噪声分解的内禀模态函数(IMF)为基函数来驱动染噪混沌信号的分解,从而减小模态混叠对混沌预测的影响.Lorenz混沌时间序列和Henon混沌时间序列的预测实例表明,本方法相对于EMD方法在预测精度和最大可预测时间上都有一定程度的提高.  相似文献   

16.
基于预测模型和遗传算法的配煤优化研究   总被引:1,自引:0,他引:1  
焦化企业配煤和炼焦过程是存在诸多不确定性、无法用数学模型描述的复杂工业过程,传统控制方法难以实施控制。因此要实现配煤成本的最优控制是个比较复杂的问题。本文在焦化理论和实际生产所获的数据基础上,以神经元网络为指导,建立焦炭质量预测模型;利用单种和混合煤中各组分的关系,建立起混合煤的质量预测模型。在以上两个模型的基础上,把炼焦过程中配煤成本最小化的问题转化成为带约束的最优化问题。再利用遗传算法可以比较方便地求得近似最优解。本文利用实际数据和仿真实验,验证方法的可行性。  相似文献   

17.
为提高泥石流预测预报的准确性,提出一种基于DBSCAN聚类的改进极限学习机(ELM)算法。首先,利用DBSCAN算法对泥石流发生训练的数据进行聚类处理;其次,将聚类得到的不同训练集分类训练ELM分类器;最后,利用ELM分类器对预测集数据进行预测。实验结果表明,利用改进ELM算法对泥石流发生预测的平均准确率达到91.6%,改进ELM算法的稳定性与传统ELM算法相比有明显提高,与传统ELM算法、BP神经网络和Fisher预测法相比,改进ELM算法的预测精度更高。  相似文献   

18.
建筑能耗数据具有非平稳和非线性特征,单一预测模型很难对其进行精准预测,提出一种用于建筑能耗短期预测的新型混合模型。利用互补集合经验模态分解方法(CEEMD)将波动性较大的能耗数据分解为一组本征模态函数和一个残差序列;基于反向学习、差分进化算法并引入控制参数对鲸鱼优化算法(WOA)进行改进,有效解决算法早熟收敛与陷入局部最优等问题,提出改进算法UWOA(upgraded whale optimization algorithm);利用UWOA优化Elman神经网络的权值与阈值,优化后的Elman神经网络对本征模态函数和残差序列进行预测并集成,得到能耗预测值。应用CEEMD-UWOA-Elman混合模型对上海某大型公共建筑能耗进行短期预测,结果显示混合模型获得很好的预测效果。  相似文献   

19.
为优化嵌入式软件可靠性预测智慧可控感知机制,构建了基于连续协同机器学习算法的嵌入式软件可靠性预测模型.构建连续协同机器学习算法机制实现嵌入式软件可靠性精准预测,利用深度LSTM构建时间正序下的嵌入式软件核心要素样本精准预测机制,利用DCNN对数据池后置测试集进行隐性知识感知并输出最优预测结果.最后,对模型开展了工程应用...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号