首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
融合对抗学习的因果关系抽取   总被引:2,自引:0,他引:2  
因果关系抽取在事件预测、情景生成、问答以及文本蕴涵等任务上都有重要的应用价值.但多数现有的因果关系抽取方法都需要人工定义模式和约束,且严重依赖知识库.为此,本文利用生成式对抗网络(Generative adversarial networks,GAN)的对抗学习特性,将带注意力机制的双向门控循环单元神经网络(Bidirectional gated recurrent units networks,BGRU)与对抗学习相融合,通过重定义生成模型和判别模型,基本的因果关系抽取网络能够与判别网络形成对抗,进而从因果关系解释信息中获得高区分度的特征.实验结果表明,与当前用于因果关系抽取的方法相比较,该方法表现出更优的抽取效果.  相似文献   

2.
因果关系抽取是自然语言处理(NLP)中的一种关系抽取任务,它通过构造事件图来挖掘文本中具有因果关系的事件对,已经在金融、安全、生物等领域的应用中发挥重要作用.首先,介绍了事件抽取和因果关系等概念,并介绍了因果关系抽取主流方法的演变和常用数据集;然后,列举了当前主流的因果关系抽取模型,并且在分别对基于流水线的模型和联合抽...  相似文献   

3.
针对现有中文因果关系抽取方法对因果事件边界难以识别和文本特征表示不充分的问题,该文提出了一种基于外部词汇信息和注意力机制的中文因果关系抽取模型BiLSTM-TWAM+CRF。该模型使用SoftLexicon方法引入外部词汇信息构建词集,解决了因果事件边界难以识别的问题。通过构建的双路关注模块TWAM(Two Way Attention Module),实现了从局部和全局两个角度充分刻画文本特征。实验结果表明,与当前中文因果关系抽取模型相比较,该文所提方法表现出更优的抽取效果。  相似文献   

4.
针对现有事件因果关系抽取方法关系边界识别能力弱和文本语义表征不足的问题,提出一种基于双层CNN-BiGRU-CRF深度学习模型的事件因果关系抽取方法。将因果关系抽取任务转换为两次序列标注任务分别由两层CNN-BiGRU-CRF模型完成,上层模型用于识别事件因果关系语义角色词,其标注结果作为特征输入下层模型划分因果关系边界。在每层模型中,采用突发事件样本数据对BERT模型进行微调,形成文本表示模型以获取语义特征向量矩阵,利用卷积神经网络和双向门控循环单元分别提取局部和全局深层特征,并将上述特征在每个时间序列步进行线性加权融合以增强语义表征能力,最终基于残差思想将高区分度特征输入CRF模型解码完成序列标注任务。在中文突发事件语料集上的实验结果表明,与BiLSTM-Att-规则特征、GAN-BiGRU-CRF等因果关系抽取方法相比,该方法的事件因果关系抽取效果更好,F值达到91.81%,能有效实现事件因果关系的准确抽取。  相似文献   

5.
因果关系抽取是一种从文本中抽取因果实体对的自然语言处理技术,被广泛应用于金融、医疗等领域。传统的因果关系抽取技术需要人工选取文本特征进行因果匹配或使用神经网络多次提取特征,导致模型结构较为复杂,抽取效率不高。针对这一问题,提出一种基于位置的因果关系抽取网络(Position-based Causal Extraction Network, PosNet),以期提高因果关系的抽取效率。首先,预处理文本,构建多粒度文本特征作为网络的输入;然后,将文本特征传入位置预测网络,使用经典的浅层卷积神经网络预测因果实体的开始位置和结束位置;最后,通过组装算法按起始位置组装因果实体,抽取出全部因果实体对。实验结果证明PosNet可以提升因果关系抽取的效率。  相似文献   

6.
生物医学实体关系抽取是生物医学文本挖掘领域的一项重要任务,它可以自动从生物医学文本中挖掘实体间的相互关系。目前,生物医学实体关系抽取方法一般只针对某一特定任务(如药物关系,蛋白质交互关系抽取等)训练单任务模型进行抽取,忽略了多个任务之间的相关性。因此,该文使用基于神经网络的多任务学习方法对多个生物医学关系抽取任务间的关联性进行了探索。首先构建了全共享模型和私有共享模型,然后在此基础上提出了一种基于Attention机制的主辅多任务模型。在生物医学领域关系抽取的5个公开数据集上的实验结果表明,该文的多任务学习方法可以有效地在学习任务之间共享信息,使得任务间互相促进,获得了比单任务方法更好的关系抽取结果。  相似文献   

7.
针对目前航空安全事故因果关系分析一般采用基于概率和统计的方法,缺乏对事故发生过程的详细分析这一问题,提出通过因果关系抽取挖掘事故的因果发展过程。针对世界航空安全事故调查报告构成的文本数据集,将航空安全事故因果关系分为显式因果关系和隐式因果关系,其中显式因果关系抽取采用模式匹配的方法,抽取准确率达到87.72%;隐式因果关系抽取则采用改进的基于自注意力机制的双向长短期记忆网络方法,该方法在公共数据集和航空安全数据集上的F值较基准方法分别提高近6%和10%。在有效实现单一航空安全事故因果关系对的识别与抽取的基础上,生成了每个事故的因果关系图,为深入分析航空安全事故发生过程和情景重现提供数据与方法支持。  相似文献   

8.
面向法律文本的实体关系联合抽取技术对于案情关键信息的智能提取至关重要,是智慧司法领域应用中的重要环节。目前的联合抽取方法虽然已经在特定罪名案件的数据集上取得了较好的效果,但是由于模型在训练时只关注了特定罪名类型文本数据的特点,使得模型的泛化能力有限,在应用到多罪名案件的情况下常常使得模型的效果下降。因此引入多任务学习的方法对多罪名情形下的实体关系联合抽取进行了研究,以涉毒类案件和盗窃类案件两大类罪名的文书数据为基础,构建了一个罪名分类任务作为联合抽取的辅助任务,通过基于特征筛选的动态加权多任务模型同时对两个任务进行学习,在单任务模型的基础上整体F1值提升了2.4个百分点,在涉毒类案件和盗窃类案件上的F1值分别提升了1.6和3.2个百分点。  相似文献   

9.
现有的信息抽取工作多是针对无层次结构的数据信息,而在实际任务中,文本中的数据常常具有复杂的嵌套层次结构,如文档中包含多个不同类型的信息块序列,每个块中又包含了一个独立的信息序列.针对具有层级结构的信息抽取问题,提出一种基于联合序列标注的层级信息抽取方法.一方面使用BiLSTM-CNN-CRF模型分别对不同层级的数据进行...  相似文献   

10.
在非结构化生物医学文本数据中提取出实体之间的关系,对生物医学的信息化发展有着重大意义,同时也是自然语言处理领域的研究热点。目前,在生物医学数据中正确地提取出实体间的关系面临着两个难点:1)由于在生物医学数据中实体单词大多由复合词、未知词组成,模型难以学习到实体内部的语义特征;2)由于生物医学带标注数据较少,而神经网络的参数量较大,使得神经网络容易过拟合。因此,文中提出了基于提示学习的生物医学关系抽取方法,增加了一种针对实体的注解标签,来对实体进行提示以达到实体语义增强以及联系上下文信息的目的。此外,在传统提示调优方法的基础上,文中使用连续性模板来缓解人工设计模板所带来的性能偏差,同时结合深度前缀控制attention的深度提示能力,使模型在处理较少数据的情况时仍能取得良好的效果。  相似文献   

11.
关系抽取(RE)是为了抽取文本中包含的关系,是信息抽取(IE)的重要组成部分。近年来,研究人员利用深度学习技术在该领域开展了深入研究。由于神经网络类型丰富,基于深度学习的关系抽取方法也更加多样。该文从关系抽取的基本概念出发,对关系抽取方法依据不同的视角进行了类别划分。随后,介绍了基于深度学习的关系抽取方法常用的数据集,并总结出基于深度学习的关系抽取框架。在此框架下,对关系抽取方法在面向深度学习的输入数据预处理、面向深度学习的神经网络模型设计等方面的具体工作进行了分析与评述,最后对未来的研究方向进行了探讨和展望。  相似文献   

12.
在生物医学文本挖掘领域,生物医学的命名实体和关系抽取具有重要意义.然而目前中文生物医学实体关系标注语料十分稀缺,这给中文生物医学领域的信息抽取任务带来许多挑战.该文基于深度学习技术搭建了中文生物医学实体关系抽取系统.首先利用公开的英文生物医学标注语料,结合翻译技术和人工标注方法构建了中文生物医学实体关系语料.然后在结合...  相似文献   

13.
化学物质和疾病之间的副作用关系使得化学物质-疾病关系受到更多关注.介绍一个从生物医学文献中抽取化学物质致病关系的系统——CDRExtractor.该系统首先训练一个句子级别分类器,用于抽取存在于同一个句子中的化学物质致病(chemical-induced disease, CID)关系.在句子级别分类器训练阶段,将特征核和图核特征看作2个独立的视图,采用基于半监督的Co-training方法,利用少量人工标注的训练集和大量未标注语料训练模型.之后,CDRExtractor利用文档级别的化学物质与疾病信息特征训练一个文档级别的分类器用于实现文档级别跨句子的CID关系抽取.最后,利用规则将2个分类器的抽取结果进行整合,生成最终的输出结果.实验结果表明:CDRExtractor在BioCreative V CDR评测任务CID子任务提供的测试集上F值达到67.72%.  相似文献   

14.
基于神经网络的实体关系抽取模型已经被证明了它的有效性, 但使用单一的神经网络模型在不同的输入条件下, 会表现出不同的结果, 性能不太稳定. 因此本文提出一种利用集成学习思想将多个单一模型集成为一个综合模型的方法. 该方法主要使用MLP (MultiLayer Perceptron)将两个单一模型Bi-LSTM (Bi-...  相似文献   

15.
实体关系抽取是信息抽取领域的重要研究内容,对知识库的自动构建起着至关重要的作用。针对非结构化文本实体关系抽取存在上下文环境信息难以准确表征,致使现有抽取模型准确率不能满足实际应用需求的问题,该文提出了一种新型的实体关系抽取模型BiGRU-Att-PCNN。该模型是基于混合神经网络,首先,构建双向门控循环单元(BiGRU)以更好地获取文本序列中的上下文语序的相关信息;然后,采用注意力(Attention)机制来达到自动关注对关系影响力高的序列特征的目的;最后,通过采用分段卷积神经网络(PCNN),从调整后的序列中较好地学习到了相关的环境特征信息来进行关系抽取。该模型在公开的英文数据集SemEval 2010 Task 8上取得了86.71%的F1值,实验表明,该方法表现出了较好的性能,为信息抽取领域实体关系的自动获取提供了新的方法支持。  相似文献   

16.
持续关系抽取旨在训练模型从不断变化的数据流中学习新关系, 同时保持对旧关系的准确分类. 然而, 由于神经网络的灾难性遗忘问题, 模型在学习完新关系之后, 对旧关系的识别能力往往会大幅度降低. 为了缓解灾难性遗忘对模型性能的影响, 本文提出了一种基于对比学习和焦点损失的持续关系抽取方法. 首先, 在训练集与其增强样本集的并集上训练模型, 以学习新任务; 其次, 从训练集中, 为每个新关系选取并存储记忆样本; 然后, 将激活集中的示例与所有已知关系原型进行对比, 以学习新旧关系; 最后, 利用关系原型进行记忆再巩固, 并引入焦点损失提高模型对相似关系的区分. 在TACRED数据集上进行实验, 结果表明本文方法能够进一步缓解灾难性遗忘问题, 提升模型的分类能力.  相似文献   

17.
化学物与蛋白质之间的相互作用关系抽取对精准医学和药物发现等方面的研究有着重要作用.该文提出了一种基于最短依存路径和注意力机制的双向LSTM模型,并将其应用于化学物蛋白质关系抽取.在特征上综合考虑了最短依存路径上的词性、位置和依存关系类型等.在BioCreative VI CHEMPROT任务上的实验表明,该方法在基于依...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号