首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
选矿废水中残留的浮选药剂排入水体中会破坏水生生物的生存环境,因此有效去除选矿废水中残留的浮选药剂十分重要。以高铁酸钾为氧化剂对含乙硫氮的模拟选矿废水进行了降解试验。结果表明:高铁酸钾能快速、有效地去除模拟选矿废水中的乙硫氮;高铁酸钾用量的增大、废水pH值的降低和反应时间的延长,乙硫氮的去除率均上升。乙硫氮模拟选矿废水在初始浓度为0.2 g/L,矿浆pH=6、温度为20℃、高铁酸钾起始浓度为0.6 g/L、反应时间为45 min情况下,乙硫氮去除率可达83.65%。  相似文献   

2.
为探索广西某铅锌矿选矿废水最适宜的废水处理方法与条件,选用混凝沉降法和活性炭吸附法对人工模拟铅锌选矿废水和实际废水进行了净化处理研究。试验结果表明:对于人工模拟废水混凝沉降法和吸附法均能有效去除废水中的铅离子,但混凝沉降法对于人工废水中的浮选药剂去除效果有限,而吸附法对人工废水中的黄药和乙硫氮的去除效果较好;对于实际废水混凝沉降处理后的废水中铅离子浓度大幅降低,而对废水中的浮选药剂处理效果较差,活性炭吸附处理后废水中COD浓度明显降低,铅离子浓度进一步降低,而混凝沉降法和活性炭吸附法联合处理工艺适宜处理此选矿实际废水。  相似文献   

3.
通过稀溶液法将聚合阳离子Zr~(4+)柱撑进入提纯钠基蒙脱石(Na-mt)层间合成锆柱撑蒙脱石(Zr-pmtn),再通过浸渍法制备活性炭负载锆柱撑蒙脱石(C/Zr-pmtn)。对C/Zr-pmtn进行的XRD分析表明:Zr-pmtn和活性炭以2∶1的质量比制备的C/Zr-pmtn具有较大的晶面间距。采用C/Zr-pmtn对丁基黄药进行吸附研究,结果表明:1向初始pH=3、浓度为20 mg/L的100 m L丁基黄药溶液中投加0.1 g的C/Zr-pmtn,20℃下吸附50 min,对丁基黄药的吸附量为19.38 mg/g,丁基黄药去除率达99.72%。2C/Zr-pmtn对丁基黄药的吸附符合二级动力学方程和Langmuir等温模型,C/Zr-pmtn对丁基黄药的最大吸附量达72.098 mg/g。可见,C/Zr-pmtn是选矿废水中丁基黄药的高效吸附剂。  相似文献   

4.
湖北某铜矿含铜0.67%和钼0.012%, 现场采用高碱度铜钼混合浮选工艺, 存在石灰用量高和废水难处理等问题。通过组合捕收剂的使用及调整矿浆电位, 在石灰和过氧化钙用量各为400 g/t、组合捕收剂丁基黄药+乙硫氮(质量比1 ∶ 1)用量80 g/t的条件下(此时矿浆pH为10.5、矿浆电位177.4 mV)进行一次粗选, 可获得铜品位14.4%、回收率88.42%, 钼品位0.16%、回收率58.3%的粗精矿。当添加巯基类药剂ZN-1 40 g/t与组合捕收剂共同使用时, 金回收率可提高13百分点, 银回收率提高2百分点。紫外光谱吸附量测定表明, 在相同条件下每克黄铜矿表面吸附0.33 mg组合捕收剂, 高于单一丁基黄药(0.19 mg)和单一乙硫氮(0.27 mg), 因此强化了捕收效果。采用一次粗选、一次精选、两次扫选闭路流程, 获得的铜钼混合精矿铜品位19.55%、回收率96%, 钼品位0.32%、回收率56.25%, 较现场高碱度浮选流程铜品位提高0.5百分点, 回收率提高3百分点, 实现了低碱度条件下浮选。  相似文献   

5.
选矿废水中残留的选矿药剂会对环境及人类生活产生重要影响,因此,如何实现选矿药剂的有效降解逐渐被选矿工作者重视,为此考察了乙硫氮在水体中的降解特性。结果表明:升高温度、延长静置时间、降低溶液pH均有利于乙硫氮的降解;在反应温度为25 ℃、反应溶液pH为5.98、静置5.5 h时,乙硫氮降解率可达88.40%;添加H2O2可显著提高乙硫氮的降解率,缩短降解时间;在反应温度为25 ℃、反应溶液pH为5.98、H2O2用量为8.00×102 mg/L、静置时间为5 min时,乙硫氮的降解率可达99.69%。研究结果可以为含乙硫氮选矿废水的处理提供技术依据。  相似文献   

6.
研究了臭氧氧化工艺在不同氧化时间、pH值条件下对4种常见硫化矿浮选药剂丁黄药、乙硫氮、腐殖酸钠和二号油的去除率的影响.试验结果表明,当氧化时间为15 min时,臭氧对水中的丁黄药、乙硫氮、腐殖酸钠和二号油均能有效去除,去除率从高到低为乙硫氮>丁黄药>二号油>腐殖酸钠,当氧化时间为6min时,臭氧去除水中黄药受pH值的影响最小,在各种pH值条件下丁黄药的去除率均接近100%,其它3种药剂在pH =8~10范围内均能获得较高的去除率.在此基础上采用臭氧氧化工艺,开展了对凡口铅锌矿选矿废水去除废水的COD试验研究,试验结果表明,臭氧法能有效去除废水中的COD.废水回用试验结果表明,凡口铅锌矿选矿废水经臭氧氧化处理后回用不会影响铅、锌浮选指标.  相似文献   

7.
膨润土-钢渣复合颗粒对Zn~(2+)的去除机理   总被引:1,自引:0,他引:1       下载免费PDF全文
肖利萍  刘喆  白际驰  栾雪菲  李莹  魏彬 《煤炭学报》2017,42(4):1005-1012
为了探索酸性矿山废水中重金属离子的高效协同处理方法和开发新型多功能处理材料,采用自行研制的膨润土-钢渣复合颗粒对含Zn~(2+)酸性矿山废水的去除效果和实验现象进行对比实验研究,并利用SEM和XRD进行微观分析,结果表明:该复合颗粒不仅可以释放碱度中和酸,而且对Zn~(2+)的吸附、化学沉淀作用发生于整个反应过程,对Zn~(2+)的平衡去除量可达8.01 mg/g;SEM表面微观分析揭示了复合颗粒表面吸附Zn~(2+)并形成沉淀后还会继续吸附Zn~(2+)并发生聚沉作用,即发生了吸附-聚沉协同作用;XRD微观分析进一步揭示了Zn~(2+)在复合颗粒表面的赋存状态主要以Zn-SiO相结合的矿物相以及Zn_(12)(CO_3)_3SO_4(OH)_(16)聚合沉淀存在。膨润土-钢渣复合颗粒可发挥吸附-聚沉协同作用,是处理含重金属离子酸性矿山废水的优良多功能矿物环保材料。  相似文献   

8.
针对甘肃某选矿厂选矿废水中残留有机物(丁基黄药含量≥98%,以丁基黄药计)超标,导致回水不能回用的问题,通过溶剂法制备出了高效水处理剂BiOCl,并且采用XRD、SEM等手段对BiOCl的结构及形貌进行了表征。试验分别考察了暗黑吸附时间、水处理剂用量、降解时间、选矿废水初始pH值等对选矿废水中丁基黄药降解率的影响,研究结果表明,当暗黑吸附时间为30min,BiOCl用量为50mg,pH为7,丁基黄药初始浓度为100mg/L降解30min时,水处理剂BiOCl对选矿废水中丁基黄药降解率最高达到97.94%。经过处理的废水经过选矿试验的验证可以循环使用。  相似文献   

9.
通过焙烧实验和振荡吸附实验,研究了城市污泥.膨润土颗粒吸附剂的制备及其在含铅离子废水中的吸附特性.结果表明,颗粒吸附剂制备的最佳组合条件为城市污泥:膨润土=6:4(质量比),粒径为1.2mm,在550℃下焙烧2h;在温度为25℃左右,pH值为4,Pb~(2+)初始浓度为30mg/L、吸附剂用量为10g/L、吸附时间为30min条件下,吸附剂对废水中的Pb~(2+)的去除效率可达92.55%.吸附剂对Pb~(2+)的吸附符合Langmuir吸附方程.  相似文献   

10.
钨矿选矿过程中加入了大量的水玻璃和油酸,造成废水中残留大量水玻璃,使废水呈现黏稠的胶状,悬浮物难以沉降。目前国内外关于选矿废水处理的研究大多集中在选矿废水中有机选矿药剂的降解和重金属离子的去除,而对难沉降胶体的去除主要以传统的混凝剂聚合氯化铝(PAC)为主。本研究对不同的絮凝剂和助凝剂进行筛选组合并优化实验参数,使处理后选矿废水达到选矿用水水质要求。实验结果表明:基于实际选矿废水水质调研配制的模拟选矿废水pH值为1226,浊度为1 390 NTU,悬浮物(SS)为2 780 mg/L,Zeta电位为-59.9 mV;优化絮凝剂氯化钙(CaCl2)的投加量为500 mg/L,助凝剂1 500万分子量阳离子型聚丙烯酰胺(PAM)的投加量为30 mg/L,450 r/min快速搅拌反应5 min,160 r/min慢速搅拌2 min后静置沉淀20 min,则上清液浊度为7.11 NTU,浊度去除率高达99.48%。  相似文献   

11.
某硫化铅锌矿的优先浮选分离工艺研究   总被引:3,自引:0,他引:3  
选择性捕收剂乙硫氮对广西某硫化铅锌矿的优先浮选工艺有良好作用.优先浮铅时添加石灰、硫酸锌、乙硫氮;浮锌时添加石灰、硫酸铜、丁黄药.产出铅精矿Pb品位75.03%,Pb回收率94.50%;锌精矿Zn品位58.00%,Zn回收率92.30%.获得了良好的试验指标.  相似文献   

12.
硫化矿尾矿水对黄铁矿浮选性能的影响   总被引:1,自引:0,他引:1  
针对会泽铅锌矿硫化矿尾矿水对黄铁矿浮选性能的影响,分别采用丁黄药和乙硫氮做捕收剂,研究在尾矿水和去离子水中黄铁矿的可浮性。在去离子水中以丁黄药和乙硫氮做捕收剂的条件下,分别加入硫酸锌、硫酸铜和水玻璃作为调整剂,研究对黄铁矿浮游性的影响。结果表明;尾矿水中某些成分对黄铁矿的可浮性有强烈的抑制作用,该尾矿水直接回用会对黄铁矿的浮选产生不利影响。丁黄药和乙硫氮对黄铁矿都有很好的捕收能力,硫酸锌、硫酸铜和水玻璃3种调整剂在不同捕收剂条件下对黄铁矿浮游性的影响不同。  相似文献   

13.
对含铅0.48% 、锌0.75%、银90.00 g/t的山西某铅锌银多金属矿进行了选矿试验研究。采用铅银混浮-锌浮选工艺,在磨矿细度-0.074 mm粒级占80%条件下,以水玻璃为调整剂、硫酸锌+亚硫酸钠为锌矿物抑制剂、BK906和BK903G为组合捕收剂、BK-201为起泡剂,优先选铅银,选铅银尾矿以石灰为调整剂、硫酸铜为活化剂、丁基黄药为捕收剂选锌,可获得铅品位27.54%、铅回收率76.47%、银品位5252.5 g/t、银回收率73.03%、锌品位3.87%的铅银混合精矿和锌品位54.96%、锌回收率71.00%、银品位359.6 g/t的锌精矿。  相似文献   

14.
安徽新桥铅锌矿石电位调控浮选工艺研究   总被引:2,自引:1,他引:1  
为充分利用安徽铜陵新桥矿业有限公司的矿石资源,对新桥矿区的铅锌矿石进行了矿石性质和选矿工艺研究。针对该矿石金属硫化矿占主体,且主要金属矿物为黄铁矿、磁黄铁矿、闪锌矿、铁闪锌矿、方铅矿的特点,采取电位调控依次优先浮选工艺,用石灰控制矿浆电位(矿浆pH值),对原矿以乙硫氮和ZnSO4+YN作铅矿物的捕收剂和锌硫矿物的强化抑制剂进行浮铅,对浮铅尾矿以硫酸铜和丁基黄药作锌矿物的活化剂和捕收剂浮锌,可获得铅、锌、硫3种精矿,不产生尾矿,且试验指标优良。  相似文献   

15.
某难选铅锌硫化矿浮选工艺试验研究   总被引:2,自引:0,他引:2  
针对某铅锌硫化矿嵌布粒度微细、连生关系复杂、含泥量大的特征,通过多种方案的比较,采用丁铵黑药优先选铅,碳酸钠 硫酸锌混合溶液给药抑制闪锌矿,选铅尾矿添加石灰调浆,用硫酸铜活化,丁黄药选锌的试验方案,成功实现了铅锌的有效分离,获得了较佳的选矿指标。  相似文献   

16.
硫化铜矿新型捕收剂PZO的浮选性能与机理   总被引:1,自引:0,他引:1  
为检验广州有色金属研究院研制的新型硫化铜矿浮选捕收剂PZO在铜硫分离中的选择性,比较了PZO、丁基黄药和丁铵黑药在不同矿浆pH值、不同用量条件下分别浮选黄铜矿和黄铁矿单矿物的效果,并借助紫外可见分光光谱仪、红外光谱仪对PZO在黄铜矿、黄铁矿表面的吸附量和作用机理进行了研究。结果显示:①在试验pH范围内,丁基黄药、丁铵黑药、PZO对黄铜矿的捕收能力均强于对黄铁矿。②矿浆的酸碱度对黄铜矿可浮性的影响均较小,且黄铜矿回收率的高点在弱酸或弱碱性环境下,黄铁矿在酸性环境下的可浮性明显强于在碱性环境。③3种捕收剂的选择性强弱顺序为PZO>丁铵黑药>丁基黄药,在pH=8.5时,黄铜矿与黄铁矿的回收率差值可达68.19个百分点。④PZO是一种酯类浮选药剂,与黄铁矿相比,其更容易在黄铜矿表面吸附,且以化学吸附为主。以上结果表明,PZO在pH=8.5的环境下可高效分离黄铜矿与黄铁矿。  相似文献   

17.
细粒锡石浮选研究   总被引:17,自引:2,他引:15  
对蒙自矿冶有限责任公司白牛厂矿区铅锌浮选流程中的磁选尾矿进行了浮锡研究。以BY-9为捕收剂, P86为辅助捕收剂, BY-5和碳酸钠为脉石抑制剂, 一次浮锡可获得锡品位8.56%,回收率61.61%的锡粗精矿,锡粗精矿再浮, 锡精矿锡品位达到53.58%,作业回收率81.35%; 尾矿锡品位1.84%, 回收率18.65%。两次浮锡获得高品位锡精矿锡总回收率50.12%,尾矿锡回收率11.49%。  相似文献   

18.
对新疆某碳质细粒浸染型难选金矿进行选矿试验研究,结果表明,以硫酸铜为活化剂、丁基黄药和丁铵黑药为捕收剂,采用阶段磨矿-阶段浮选的流程,开路试验得到金品位77.42 g/t、金回收率63.10%的较好浮选指标。  相似文献   

19.
单斜磁黄铁矿浮选行为研究   总被引:2,自引:0,他引:2  
通过单矿物试验,研究了单斜磁黄铁矿的浮选行为。结果表明:单斜磁黄铁矿在丁黄药或乙硫氮体系中的可浮性基本一致,矿浆电位对其浮选行为影响不大。碱性条件下,乙硫氮对单斜磁黄铁矿的捕收能力比丁黄药强。以丁黄药为捕收剂时,在酸性、中性和弱碱性条件下,腐植酸钠+氯化钙组合抑制剂可很好地抑制经CuSO4活化的单斜磁黄铁矿;在NaOH形成的强碱性条件下,该组合抑制剂很难抑制活化的单斜磁黄铁矿;而在CaO形成的强碱性条件下,即使采用单一腐植酸钠也可以实现对活化单斜磁黄铁的抑制。  相似文献   

20.
通过黄铜矿与磁黄铁矿的单矿物浮选试验,研究矿浆pH、捕收剂丁黄药、抑制剂石灰对其浮选行为的影响。利用红外光谱、循环伏安测试技术,研究其浮选分离的机理。单矿物浮选试验结果表明黄铜矿和磁黄铁矿浮选分离的最佳条件为pH=10,丁黄药浓度为20 mg/L,石灰浓度为300 mg/L。红外光谱测试结果表明丁黄药在矿物表面氧化生成双黄药并通过化学吸附吸附在矿物表面,石灰在磁黄铁矿表面生成氢氧化钙和硫酸钙组成的钙膜。循环伏安测试表明在未添加丁黄药时黄铜矿表面氧化生成疏水的硫单质和硫化铜,磁黄铁矿表面会生成亲水的氢氧化物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号