首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GaN-based LEDs with photonic crystal (PhC) patterns on an n- and a p-GaN layer by nano-imprint lithography (NIL) are fabricated and investigated. At a driving current of 20 mA on Transistor Outline (TO)-can package, the light output power of the GaN-based LED with PhC patterns on an n- and a p-GaN layer is enhanced by a factor of 1.30, and the wall-plug efficiency is increased by 24%. In addition, the higher output power of the LED with PhC patterns on the n- and p-GaN layer is due to better crystal quality on n-GaN and higher scattering effect on p-GaN surface using PhC pattern structure.  相似文献   

2.
GaN-based nanoporous green LEDs with different pore depth have been fabricated by using anodic aluminum oxide (AAO) as dry etching mask. The experimental results show that the electrical properties of the nanoporous LEDs with different pore depths are similar, but for the optical properties, the LEDs with nanopores extended to the p-GaN layer exhibits the best performance, if increase the depth to MQWs or decrease to the ITO layer will both decrease the light output power (LOP). By calculating the light extraction efficiency using three-dimensional (3D) finite-difference time-domain method, the decrease of the light output is mainly attributed to the reduced light extraction efficiency when the pore depth stop at ITO transparent layer instead of p-type layer, while if the depth reach the MQWs, the deterioration of the QWs which is caused by dry etching damage will play an important role. This optimization would give a valuable guidance to the surface structure design for nanostructured GaN-based LEDs, such as surface roughening, photonic crystal, or top-down fabricated surface-plasmon enhanced LEDs.  相似文献   

3.
The selective wet etching of a p-GaN layer by using a solution of KOH in ethylene glycol (KE) was studied to enhance the optical and electrical performance of the GaN-based light-emitting diodes (LEDs). The surface of the p-GaN, which was selectively etched in the KE solution, showed hexagonal-shaped etch pits. The light-output power of etched LEDs was improved by 29.4% compared to that of the nonetched LED. This improvement was attributed to the increase in the probability of photons to escape due to the increased surface area of textured surface and the reduction in contact resistance of the ohmic layer resulting from the increased contact area and hole concentration on the textured p-GaN. The reverse leakage current of the LED was also greatly decreased due to the surface passivation and the removal of defective regions from the p-GaN.  相似文献   

4.
GaN-based light-emitting diodes (LEDs) with naturally textured surfaces grown by MOCVD were demonstrated. In this study, a growth-interruption step and a surface treatment using biscyclopentadienyl magnesium (CP/sub 2/Mg) were simultaneously performed to form a plurality of nuclei sites on the surface of a p-type cladding layer, and then a p-type contact layer was grown on the p-type cladding layer, so as to create a p-type contact layer with a rough surface having truncated pyramids. Experimental results indicated that GaN-based LED with the truncated pyramids on the surface exhibited an enhancement in output power of 66% at 20 mA. It is worth noting that the typical 20-mA-driven forward voltage is only slightly higher than those of conventional LEDs (without the Mg-treatment process).  相似文献   

5.
Indium-tin-oxide (ITO) is deposited as a transparent current spreading layer of GaN-based light-emitting diodes (LEDs). To reduce the interfacial Schottky barrier height, a thin p-In/sub 0.1/Ga/sub 0.9/N layer is grown as an intermediate between ITO and p-GaN. The contact resistivity around 2.6/spl times/10/sup -2/ /spl Omega//spl middot/cm/sup 2/ results in a moderately high forward voltage LED of 3.43 V operated at 20 mA. However, the external quantum efficiency and power efficiency are enhanced by 46% and 36%, respectively, in comparison with the conventional Ni-Au contact LEDs. In the life test, the power degradation of the p-In/sub 0.1/Ga/sub 0.9/N-ITO contact samples also exhibits a lower value than that of the conventional ones.  相似文献   

6.
In an attempt to enhance the reliability of GaN-based light-emitting diodes (LEDs), the selective wet chemical etching of p-GaN surface in the GaN-based LEDs using KOH+NaOH in an ethylene glycol solution was investigated. The leakage currents of the etched LED under forward and reverse bias voltages were much lower, compared to those of a nonetched LED. The etched LED also showed improved light extraction efficiency and the degradation rate of light output power at a high injection current of 300 mA was slower than that for a nonetched LED. These results can be attributed to a decrease in the surface defects, an increase in hole concentration, and the increased surface roughness of the etched p-GaN  相似文献   

7.
甄珍珍  杨瑞霞  王静辉 《半导体技术》2012,37(5):371-374,389
针对GaN基发光二极管中p-GaN与透明导电薄膜ITO之间的接触进行研究,尝试找出透明导电层ITO的优化制程条件。将在不同氧流量、ITO厚度及退火温度下制备的透明电极ITO薄膜应用于GaN基发光二极管,来增加电流扩展,减小ITO与p-GaN欧姆接触电阻,降低LED工作电压及提高透过率、增强LED发光亮度。将ITO薄膜应用于218μm×363μm GaN基发光二极管LED,分析其在20 mA工作电流条件下正向电压和光输出功率的变化,在优化条件下制得的蓝光LED在直流电流20 mA下的正向电压3.23 V,光输出效率为23.25 mW。  相似文献   

8.
We report the enhancement of light extraction efficiency (LEE) and electrical performance in GaN-based green light-emitting diodes (LEDs) using ZnO nanorods formed on the etched surface of p-GaN. Green LEDs with hybrid ZnO nanorod structures grown on the hexagonally etched topmost layer of the LEDs, show an improvement in electroluminescence intensity that is 3.5 times higher than LEDs without any other surface treatments. The improvement in LEE in LEDs with nanohybrid structures was confirmed by finite-difference time-domain simulation analysis. Besides LEE enhancement, the surface etching effects on the reduction of leakage current of fabricated LEDs were also investigated.  相似文献   

9.
This study develops a highly transparent nickel-oxide (NiO/sub x/)-indium-tin-oxide (ITO) transparent Ohmic contact with excellent current spreading for p-GaN to increase the optical output power of nitride-based light-emitting diodes (LEDs). The NiO/sub x/-ITO transparent Ohmic contact layer was prepared by electron beam in-situ evaporation without postdeposition annealing. Notably, the transmittance of the NiO/sub x/-ITO exceeds 90% throughout the visible region of the spectrum and approaches 98% at 470 nm. Moreover, GaN LED chips with dimensions of 300 /spl times/ 300 /spl mu/m fabricated with the NiO/sub x/-ITO transparent Ohmic contact were developed and produced a low forward voltage of 3.4 V under a nominal forward current of 20 mA and a high optical output power of 6.6 mW. The experimental results indicate that NiO/sub x/-ITO bilayer Ohmic contact with excellent current spreading and high transparency is suitable for fabricating high-brightness GaN-based light-emitting devices.  相似文献   

10.
This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates.The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode,together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer.When operated at 350 mA,the via-TF-LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED).After covering with yellow phosphor that converts some blue photons into yellow light,the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times,as compared with the white TF-LED and the white LS-LED,respectively.The significant LOP improvement of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface.  相似文献   

11.
High light-extraction (external quantum efficiency ~40%) 465-nm GaN-based vertical light-emitting diodes (LEDs) employing double diffuse surfaces were fabricated. This novel LED structure includes one top transmitted diffuse surface and another diffuse omnidirectional reflector (ODR) on the bottom of a LED chip. The diffusive ODR consists of a roughened p-type GaN layer, an indium-tin-oxide (ITO) low refractive index layer, and an Al layer. The surface of the p-type GaN-layer was naturally roughened while decreasing the growth temperature to 800 degC. After flip-bonding onto a Si substrate by AuSn eutectic metal and laser lift-off processes to remove the sapphire substrate, an anisotropic etching by dilute potassium hydroxide (KOH) was employed on the N-face n-GaN layer to obtain transmitted diffuse surfaces with hexagonal-cone morphology. The double diffused surfaces LEDs show an enhancement of 56% and 236% in light output power compared to single side diffused surface and conventional LEDs, respectively. The devices also show a low leakage current in the order of magnitude of 10 -8 A at -5 V and a calculated external quantum efficiency of about 40%. The high scattering efficiency of double diffused surfaces could be responsible for the enhancement in the device light output power  相似文献   

12.
Presents a surface-textured indium-tin-oxide (ITO) transparent ohmic contact layer on p-GaN to increase the optical output of nitride-based light-emitting diodes (LED) without destroying the p-GaN. The surface-textured ITO layer was prepared by lithography and dry etching, and dimensions of the regular pattern were approximately 3 /spl times/ 3 /spl mu/m. The operating voltage of the surface-textured LED was almost the same as that of the typical planar LED since the ITO layer was in ohmic contact with the p-GaN. The experimental results indicate that the surface-textured ITO layer is suitable for fabricating high-brightness GaN-based light emitting devices.  相似文献   

13.
Correlation between material properties of bulk p-GaN layers grown on undoped GaN and device performance of InGaN/GaN blue light-emitting diodes (LEDs) as a function of p-GaN growth temperature were investigated. The p-GaN layers of both structures grown by metal-organic chemical-vapor deposition were heavily doped with Mg. As the growth temperature of the bulk p-GaN layer increased up to 1,080°C, NA-ND increased. However, above 1,110°C, NA-ND sharply decreased, while the fluctuation of Mg concentration ([Mg]) increased. At this time, a peculiar surface, which originated from inversion domain boundaries (IDBs), was clearly observed in the bulk p-GaN layer. The IDBs were not found in all LEDs because the p-GaN contact layer was relatively thin. The change in photoluminescence emission from the ultraviolet band to blue band is found to be associated with the fluctuation of [Mg] and IDBs in bulk p-GaN layers. The LED operating voltage and reverse voltage improved gradually up to the p-GaN contact-layer growth temperature of 1,080°C. However, the high growth temperature of 1,110°C, which could favor the formation of IDBs in the bulk p-GaN layer, yielded poorer reverse voltage and saturated output power of the LEDs.  相似文献   

14.
A thin film consisting of a disordered nanorod network of indium tin oxide (ITO) and conventional ITO films are fabricated on gallium nitride (GaN) based-light emitting diodes (LEDs) by electron beam evaporation. The surface morphologies are observed by scanning electron microscopy (SEM). The disordered nanorod network of ITO is grown in vacuum without oxygen. It can be applied directly on the LED as the current spreading film unlike other nanorods which require growth on a conductive layer. The transmittance, current–voltage characteristic, and the dependence of light output power on current are measured for disordered nanorod network ITO LEDs and conventional ITO LEDs, respectively. The measurement results indicate that the nanorod network provides a significant improvement in the light output power of GaN-based LEDs. The influence of the structure of ITO films on the light output power of GaN-based LEDs is discussed.  相似文献   

15.
研制了一种在侧壁形成导热膜的GaN基发光二极管(LED),其中导热层由氮氧化铝形成,导热层外再覆盖一保护层,保护层选自氧化物、氮化物或氟化物.对LED进行电流加速老化实验,分析输出功率随老化时间的变化关系,可以看到侧壁形成导热膜的GaN基LED的输出功率衰减缓慢.实验表明由于氮氧化铝膜具有良好的导热性,其可以有效地耗散发光部分产生的热量,因此在器件侧壁形成AlON导热膜可以改善GaN基LED的输出特性并提高器件的可靠性.  相似文献   

16.
Light extraction efficiency of GaN-based light emitting diodes (LEDs) has improved significantly by using ITO/ZnO layer texturing. We have deliberately designed and successfully fabricated GaN-based LEDs having one and two interfaces of ITO/ZnO layer texturing in the device structure. It was found that the light extraction efficiencies of one and two interfaces of ITO/ZnO-layer texturing LEDs were 22.29% and 35.54% at 20 mA of current injection, respectively. Creating the chances of multiple light scattering at more than one interface is playing a major role to enhance light output power of the device. The source of the enhanced light output power is also discussed.  相似文献   

17.
A p-side-up GaN-based light-emitting diode (LED) on a silicon substrate was designed and fabricated using a combination of omnidirectional reflector (ODR) and double-side textured surface (both p-GaN and undoped-GaN) structures via surface-roughening, laser lift-off (LLO) and wafer-bonding technologies. The reflectivity of the designed ODR can reach 99.1% at a wavelength of 460 nm. The textured surface of top p-GaN was achieved under low temperature (LT) conditions using metalorganic chemical vapor deposition. It was found that the GaN LED with an extra 200-nm-thick LT p-GaN layer exhibits a 50% enhancement in luminance intensity. The luminance efficiency of double-side roughened silicon–ODR–GaN LED with a small chip size of 250 $mu {hbox {m}} times {hbox {500}}~mu$m can be improved from 23.2% to 28.2% at an injection current of 20 mA. For the case of 1 mm $times$ 1 mm in chip size, the saturation behavior of the light output power is not observed when an injection current increased from 20 to 350 mA, where the luminance efficiency at 20 mA can reach 28.9%, demonstrating an enhancement by 46%, as compared with that of the conventional GaN–sapphire LEDs. These enhanced results can be attributed to higher reflectivity from the ODR and multiple chances of light emitted from the active region to escape, as well as a centralizing effect of light along the vertical direction.   相似文献   

18.
The enhancement of light extraction from GaN-based light-emitting diodes (LEDs) with a double 12-fold photonic quasi-crystal (PQC) structure using nanoimprint lithography is presented. At a driving current of 20 mA on a transistor-outline-can package, the light output power of an LED with a nanohole patterned sapphire substrate (NHPSS) and an LED with a double PQC structure are enhanced by 34% and 61%, compared with the conventional LED. In addition, the higher output power of the LED with the double PQC structure is due to better reflectance on NHPSS and higher scattering effect on p-GaN surface using a 12-fold PQC structure pattern. These results provide promising potential to increase the output powers of commercial light-emitting devices.   相似文献   

19.
An interesting GaN-based light-emitting diode (LED) with a ten-period i-InGaN/p-GaN (5-nm/5-nm) superlattice (SL) structure, inserted between a multiple-quantum-well structure and a p-GaN layer, is fabricated and studied. This inserted SL can be regarded as a confinement layer of holes to enhance the hole injection efficiency. As compared with a conventional LED device without the SL structure, the studied LED exhibits better current-spreading performance and an improved quality. The turn-on voltage, at 20 mA, is decreased from 3.32 to 3.14 V due to the reduced contact resistance as well as the more uniformity of carrier injection. A substantially reduced leakage current (10-7-10-9 A) and higher endurance of the reverse current pulse are found. As compared with the conventional LED without the SL structure, the significant enhancement of 25.4% in output power and the increment of 5% in external quantum efficiency are observed.  相似文献   

20.
A practical approach to fabricate textured GaN-based light-emitting diodes (LEDs) by nanosphere lithography is presented. By spin coating a monolayer of $hbox{SiO}_{2}$ nanoparticles as the mask, textured LEDs can be fabricated. Both textured p-GaN and textured indium tin oxide LEDs show significant improvement over conventional LEDs without damaging the electrical characteristics. The results show that the method is promising for manufacturing low-cost high-efficient GaN-based LEDs.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号