首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional equalizers are very sensitive to carrier frequency offsets between the transmitter and receiver. Coherent receivers with frequency estimation algorithms can remove the offset to prevent the equalizer breakdown, but with a penalty in receiver complexity. On the other hand, noncoherent receivers such as differential detectors are inherently robust to the frequency offsets but cannot employ standard equalization techniques due to their nonlinear front-end. We introduce a simple noncoherent equalizer receiver structure for fading channel environments with short memory (up to two-bit intervals). The receiver consists of a whitened matched filter followed by a differential detector and a maximum likelihood sequence estimation (MLSE) equalizer. We examine the performance of this noncoherent equalizer by both analysis and simulation. It is shown that despite the simplicity, this receiver structure is capable of significant performance improvement as compared to an ordinary differential detector while operating with receiver frequency offsets two orders of magnitude greater than a traditional MLSE equalizer. This structure offers an attractive solution for high-bit-rate cordless transmission systems such as Digital Enhanced Cordless Telecommunications (DECT) that use simple noncoherent receivers whose performance can be constrained by channel dispersion. Using DECT as a case study, we show that the equalizer's performance limits are caused by the receiver nonlinearity and can be improved by adaptation of this nonlinearity to channel conditions.  相似文献   

2.
A new and efficient class of nonlinear receivers is introduced for digital communication systems. These iterated-decision receivers use optimized multipass algorithms to successively cancel interference from a block of received data and generate symbol decisions whose reliability increases monotonically with each iteration. Two variants of such receivers are discussed: the iterated-decision equalizer and the iterated-decision multiuser detector. Iterated-decision equalizers, designed to equalize intersymbol interference (ISI) channels, asymptotically achieve the performance of maximum-likelihood sequence detection (MLSD), but only have a computational complexity on the order of a linear equalizer (LE). Even more importantly, unlike the decision-feedback equalizer (DFE), iterated-decision equalizers can be readily used in conjunction with error-control coding. Similarly, iterated-decision multiuser detectors, designed to cancel multiple-access interference (MAI) in typical wireless environments, approach the performance of the optimum multiuser detector in uncoded systems with a computational complexity comparable to a decorrelating detector or a linear minimum mean-square error (MMSE) multiuser detector.  相似文献   

3.
PAM data transmission receivers accomplishing maximum likelihood sequence detection (MLSD) usually require a matched filter prefilter, a sampler at the symbol rate, and a Viterbi algorithm detector. When the channel is unknown or slowly changing, one must use an adaptive matched filter prefilter. We examine an alternative optimum receiver whose optimality is independent of the matched filter prefilter and which is applicable when the channel is effectively band-limited. The sampler in the proposed receiver operates at a rate faster than the data symbol rate, enabling one to replace the matched filter by a fixed low-pass filter and still ensure that the maximum likelihood detector is supplied with a set of sufficient statistics. It is shown that the matched filter is incorporated within a modified Viterbi detector without increasing the number of states in the algorithm, although the Viterbi detector must perform computations at approximately twice the usual rate. Simulations support the optimality of the new receiver and quantitatively indicate the degradation in performance experienced by some adaptive receivers previously proposed.  相似文献   

4.
In this letter, the performance of the HIPERLAN system in an indoor multipath fading channel is considered. Due to the high carrier frequency and high data rate, a simple noncoherent demodulator followed by a nonlinear equalizer, which includes a RAM and a Viterbi decoder, is proposed to cope with intersymbol interference. The novelty of the proposed equalizer is that a complex noncoherent signal is used. Although the complexity of the receiver is doubled, performance is greatly improved with respect to real receivers  相似文献   

5.
In this paper, we present a hybrid space-time-filtered Viterbi receiver using multiple antennas for co-channel interference (CCI) reduction and intersymbol interference (ISI) equalization in a slow Rayleigh fading channel. In this approach, a space-time filter is first applied at the antenna outputs to maximize the signal-to-interference-plus-noise ratio (SINR), and the scalar output is then sent to a Viterbi equalizer. We propose a closed-form solution to jointly determine the weight vector for the space-time filter and the channel vector for the Viterbi equalizer. We also examine the need for a whitening filter prior to the Viterbi equalizer and show that it only marginally improves the performance. Simulation results are provided to validate our approach and to compare the performance of our receiver with that of different existing receivers.  相似文献   

6.
A PRML system for digital magnetic recording   总被引:1,自引:0,他引:1  
The realization of a digital recording system using partial-response class-IV signaling with maximum-likelihood sequence detection (MLSD) is described. To perform MLSD at the high data rates encountered in recording systems, a simple implementation of the Viterbi detector based on a difference-metric algorithm is developed. Decision-directed schemes for gain control and timing recovery, for tracking variations of the gain and timing phase during data readback, and for fast initial adjustment from a known preamble are presented. The dynamic behavior of the control algorithms was studied by computer simulations. Coding was used to facilitate timing recovery and gain control, to limit the path memory length of the Viterbi detector, and to allow fast and reliable startup of the receiver. The design and properties of rate 8/9 constrained codes are examined. The problem of equalization is addressed, and analog and combined analog/digital filter implementations are developed. A simple adaptive equalizer capable of compensating variations of the recording channel characteristics with track radius and/or head-to-medium distance is described  相似文献   

7.
Signal processing techniques can be used to reduce linear and nonlinear distortion in high-speed lightwave systems caused by fiber dispersion and nonideal responses of optoelectronic and electronic components. The improvement in the performance of 2.5 and 10 Gb/s intensity modulation, direct detection systems is assessed for receivers which utilize an analog taped delay line equalizer to compensate for signal distortion. Synchronous and fractionally spaced equalizers are evaluated. Smart receivers that jointly optimize the decision time, decision threshold, and equalizer tap weights under a minimum bit error ration criterion are considered. This yields the optimum system performance and allows consideration of both reduced distortion and enhanced noise arising from the signal processing. The effectiveness of the equalization is determined as a function of several important system parameters. Three-tap and five-tap synchronous equalizers yield virtually the same improvement in receiver sensitivity. Depending on the system, a five-tap fractionally spaced equalizer with half-bit-period tap spacing may or may not be significantly more effective than a three-tap synchronous equalizer  相似文献   

8.
We propose maximum-likelihood sequence estimator (MLSE) equalizers based on either Viterbi algorithm or template matching temple matching (TM) for the equalization of impairments imposed on the minimum shift keying (MSK) modulation formats in long haul transmission without optical dispersion compensation. The TM-MLSE equalizer is proposed as a simplified alternative for the Viterbi-MLSE equalizer. It is verified that the Viterbi-MLSE equalizer can operate optimally when noise approaches a Gaussian distribution. Simulation results of the performances of the two MLSE equalizers for optical frequency discrimination receiver-based optical MSK systems are described. The transmission performance is evaluated in terms of: (1) the chromatic dispersion (CD) tolerance for both Viterbi-MLSE and TM-MLSE equalizers; (2) transmission distance limits of Viterbi-MLSE equalizers with various number of states; (3)the robustness to fiber polarization mode dispersion (PMD) of Viterbi-MLSE equalizers; and (4) performance improvements for Viterbi-MLSE equalizers when utilizing sampling schemes with two and four samples per bit over the conventional single sample per bit. With a small number of states (64 states), the non-compensating optical link can equivalently reach up to approximately 928 km SSMF for 10 Gb/s transmission or 58 km SSMF for 40 Gb/s. The performance of 16-state Viterbi-MLSE equalizers for optical frequency discrimination receiver (OFDR)-based optical MSK transmission systems for PMD mitigation is also numerically investigated. The performance of Viterbi-MLSE equalizers can be further improved by using the sampling schemes with multiple samples per bit compared to the conventional single sample bit. The equalizer also offers high robustness to fiber PMD impairment.  相似文献   

9.
The concatenation of an equalizer and a Viterbi (1967) decoder is a powerful means for improving receiver performance in wireless communication systems. A soft-output equalizer increases the impact of this combination by enabling the use of soft-decision Viterbi decoding. It is well known that the maximum a posteriori (MAP) algorithm provides optimal reliability information, but at the cost of substantial complexity. This paper contains the results of an investigation into the design and performance of soft-output adaptive equalization techniques based on suboptimum trellis-based soft-output decoding algorithms. It is shown that the performance improvement relative to hard output equalizers is substantial, while the cost in terms of complexity is modest. A time-division multiple-access (TDMA) cellular system is used as the basis for comparisons. Simulation results and a complexity analysis are presented  相似文献   

10.
Noncoherent demodulators are very attractive for high performance radio LAN (HIPERLAN) systems because of their low implementation costs and their inherent robustness against frequency and carrier phase offsets. However, when the channel is time dispersive, the nonlinear intersymbol interference (ISI) introduced by these demodulators precludes the use of conventional linear equalization strategies. We present an alternative noncoherent receiver structure followed by a nonlinear equalizer, which includes a RAM and a Viterbi detector, capable of equalizing nonlinear multipath fading channels. In addition, we also present a new algorithm specifically for noncoherent demodulators, which allows estimation of all useful signal values at the input of the equalizer to be stored in the RAM. By means of computer simulations, we report the performance and computational complexity tradeoffs of the receiver/equalizer structure, including antenna diversity. We show that demodulators which consist of a complex receiver and a Viterbi detector are much more robust against multipath fading channels than traditional real noncoherent demodulators. The results suggest that in a typical HIPERLAN scenario, where the channel delay spread is less than 50 ns and a reliable line of sight component exists, it is feasible to combat multipath effects using noncoherent demodulation  相似文献   

11.
A variety of equalizers have been proposed to improve the bit-error rate (BER) of optical fiber communications by reducing the effects of chromatic dispersion (CD), polarization-mode dispersion (PMD), and other fiber impairments. Therefore, it is of interest to establish the ultimate performance of electrical equalizers under different conditions. The results presented here are based on the fact that maximum-likelihood sequence detection (MLSD) obtains the lowest BER of all possible detectors, under mild conditions. Thus, the MLSD performance is a lower bound on the BER of any electrical equalizer. We consider linear channels with PMD (all orders), CD, and the nonlinear effect of the photodetector.  相似文献   

12.
Several receiver structures for linearly modulated signals are proposed for time-varying frequency-selective channels. Their channel estimators explicitly model the time variation of the channel taps via polynomials. These structures are constructed from the following building blocks: (i) sliding or fixed block channel estimators; (ii) maximum likelihood sequence detectors (MLSDs) or decision feedback equalizers (DFEs); and (iii) single or multiple passes. A sliding window channel estimator uses a window of received samples to estimate the channel taps within or at the end of the window. Every symbol period, the window of samples is slid along another symbol period, and a new estimate is calculated. A fixed block channel estimator uses all received samples to estimate the channel taps throughout the packet, all at once. A single pass receiver estimates the channel and detects data once only. A multipass receiver performs channel estimation and data detection repetitively. The effect of the training symbol positions on the performance of the block multipass approach is studied. The bit error rate (BER) performance of the MLSD structures is characterized through simulation and analysis. The proposed receivers offer a range of performance/complexity tradeoffs, but all are well suited to time-varying channels. In fast fading channels, as the signal-to-noise ratio (SNR) increases, they begin to significantly outperform the per-survivor processing-based MLSD receivers which employ the least mean-squares (LMS) algorithm for channel estimation  相似文献   

13.
The optimal diversity–multiplexing tradeoff curve for the intersymbol interference (ISI) channel is computed and various equalizers are analyzed using this performance metric. Maximum-likelihood signal decoding (MLSD) and decision feedback equalization (DFE) equalizers achieve the optimal tradeoff without coding, but zero forcing (ZF) and minimum mean-square-error (MMSE) equalizers do not. However if each transmission block is ended with a period of silence lasting the coherence time of the channel, both ZF and MMSE equalizers become diversity-multiplexing optimal. This suggests that the bulk of the performance gain obtained by replacing linear decoders with computationally intensive ones such as orthogonal frequency-division multiplexing (OFDM) or Viterbi, can be realized in much simpler fashion—with a small modification to the transmit scheme.   相似文献   

14.
该文针对通信系统中的干扰抑制问题,提出一种基于最低误码率准则的Volterra均衡器.区别于以往研究中采用最小均方误差准则估计Volterra核,本文采用最低误码率准则.仿真表明:对于扩展的二元相移键控信号,在相对强的窄带干扰下,匹配滤波器和基于最小均方误差准则的线性均衡器已失效,而基于最低误码率准则的Volterra均衡器仍能表现出良好的性能,也大大优于最小均方误差准则的Volterra均衡器;并且在计算复杂度与误码率性能的权衡中,奇次三阶Volterra均衡器更有实用价值.  相似文献   

15.
This paper thoroughly investigates the maximum-likelihood sequence detection (MLSD) receiver for the optical ON-OFF keying (OOK) channel in the presence of both polarization mode dispersion and group velocity dispersion (GVD). A reliable method is provided for computing the relevant performance for any possible value of the system parameters, with no constraint on the sampling rate. With one sample per bit time, a practically exact expression of the statistics of the received samples is found, and therefore the performance of a synchronous MLSD receiver is evaluated and compared with that of other electronic techniques such as combined feedforward and decision-feedback equalizers (FFE and DFE). It is also shown that the ultimate performance of electronic processing can be obtained by sampling the received signal at twice the bit rate. An approximate accurate closed-form expression of the receiver metrics is also identified, allowing for the implementation of a practically optimal MLSD receiver.  相似文献   

16.
Designing low-complexity equalizers for wireless systems   总被引:1,自引:0,他引:1  
The demand on wireless communications to provide high data rates, high mobility, and high quality of service poses more challenges for designers. To contend with deleterious channel fading effects, both the transmitter and the receiver must be designed appropriately to exploit the diversity embedded in the channels. From the perspective of receiver design, the ultimate goal is to achieve both low complexity and high performance. In this article, we first summarize the complexity and performance of low-complexity receivers, including linear equalizers and decision feedback equalizers, and then we reveal the fundamental condition when LEs and DFEs collect the same diversity as the maximum-likelihood equalizer. Recently, lattice reduction techniques were introduced to enhance the performance of low-complexity equalizers without increasing the complexity significantly. Thus, we also provide a comprehensive review of LR-aided low-complexity equalizers and analyze their performance. Furthermore, we describe the architecture and initial results of a very-large-scale-integration implementation of an LR algorithm.  相似文献   

17.
Based on bit-error-ratio simulations, we investigate electrical-dispersion-compensation performance by using a nonlinear electrical equalizer based on nonlinear Volterra theory for different modulation formats. This nonlinear equalizer is compared to conventional decision-feedback equalizer as well as to maximum-likelihood sequence estimation. Especially, we show that nonlinear equalizers, in conjunction with narrowband optical filtering of the light signal, result in improved performance. First of all, the system can benefit from the noise reduction due to narrowband filtering. Second, interacting with chromatic dispersion, nonlinear equalizers benefit from the improved dispersion tolerance through spectrum reshaping by narrowband optical filtering. Finally, nonlinear equalizers can efficiently mitigate the distortion resulting from strong optical filtering  相似文献   

18.
A new and efficient class of nonlinear equalizers is developed for intersymbol interference (ISI) channels. These -"iterated-decision equalizers” use an optimized multipass algorithm to successively cancel ISI from a block of received data and generate symbol decisions whose reliability increases monotonically with each iteration. These equalizers have an effective complexity comparable to the decision-feedback equalizer (DFE), yet asymptotically achieve the performance of maximum-likelihood sequence detection (MLSD). We show that, because their structure allows cancellation of both precursor and postcursor ISI, iterated-decision equalizers outperform the minimum mean-square error DFE by 2.507 dB on severe ISI channels even with uncoded systems. Moreover, unlike the DFE, iterated-decision equalizers can be readily used in conjunction with error-control coding, making them attractive for a wealth of applications  相似文献   

19.
In this paper, a novel band-pass equalizer for orthogonal multiple carrier (omc) data receivers is investigated. Essentially, the band-pass equalizer consists of an fir filter preceding the receiver filter bank and processing the whole transmission band at the high input sampling rate. The coefficients of the fir equalizer are optimized iteratively in the sense of a minimum mean square error of the received and demodulated signals. A simulation of the proposed equalizer on a work-station shows that it adapts in a substantially shorter time compared to adaptive multichannel baseband equalizers at a comparable computational efficiency.  相似文献   

20.
The automatic modulation classifier (AMC) is an important signal processing component that helps the cognitive radio (CR) better utilize the spectrum. In a typical CR scenario, training sequence or channel knowledge is not available, and hence blind equalizers are widely used. The multipath fading channel not only affects symbol detection performance but also affects the performance of the AMC. In a conventional single input single output blind equalizer, the weights of the equalizer are adapted by minimizing cost functions that are non quadratic (multimodal). Convergence of the blind equalizer to a local minimum affects both symbol detection performance and AMC performance. In a CR scenario, it is preferable to consider the performance of the AMC also while adapting the blind equalizer weights. In this article, we propose novel CR receivers where the performance of the AMC is also considered while adapting the parameters of the blind equalizer. Computer simulations are given to illustrate the concept and yield promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号