首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly c-axis oriented ZnO thin films were grown on Si (100) substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated for the ZnO films with the buffer layers 90, 110, and 130 nm thick using X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by RF magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.  相似文献   

2.
ZnO thin films with different buffer layer thicknesses were grown on Si and porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of PS and buffer layer thickness on the structural and optical properties of ZnO thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). The ZnO buffer layers, the intensity of the (002) diffraction peak for the ZnO thin films and its full width at half maximum (FWHM) decreased with an increase in the thickness of the ZnO buffer layers, indicating an improvement in the crystal quality of the films. On introducing PS as a substrate, the grain sizes of the ZnO thin films became larger and their residual stress could be relaxed compared with the ZnO thin films grown on Si. The intensity ratio of the ultraviolet (UV) to visible emission peak in the PL spectra of the ZnO thin films increased with an increase in buffer layer thickness. Stronger and narrower UV emission peaks were observed for ZnO thin films grown on PS. Their structural and optical properties were enhanced by increasing the buffer layer thickness. In addition, introduction of PS as a substrate enhanced the structural and optical properties of the ZnO thin films and also suppressed Fabry-Perot interference.  相似文献   

3.
Jie Zhao  Lizhong Hu  Weifeng Liu 《Vacuum》2008,82(6):664-667
ZnO films were synthesized on Si(1 1 1) substrates by pulsed laser deposition (PLD) under four different growth conditions. The structural and optical properties of the samples were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and photoluminescence (PL) measurement. It is found that when ZnO film is directly prepared on Si, oxygen atmosphere can significantly enhance the near-band-edge (NBE) emission and decrease the deep-level (DL) emission, but cause a polycrystalline film. By introducing a homo-buffer layer fabricated at 500 °C in vacuum, epitaxial ZnO film with three-dimensional (3D) growth mode is achieved instead of the polycrystalline film. In particular, the epitaxial film with the buffer layer shows more intensive NBE emission and narrower full-width at half maximum (FWHM) of 98 meV than the film without the buffer layer. The experimental results suggest that both oxygen atmosphere and buffer layer are quite efficient during PLD to grow high-quality ZnO/Si heteroepitaxial films suitable for applications in optoelectronic devices.  相似文献   

4.
The properties of ZnO/MgZnO heterostructures grown by pulsed-laser deposition on sapphire (112?0) and ZnO (0001?) have been compared. Electron accumulation layers have been observed for ZnO/MgZnO heterostructures grown on sapphire by capacitance-voltage (C-V) spectroscopy. The formation of a two-dimensional electron gas (2DEG) in these structures has been confirmed by temperature dependent Hall effect measurements. From C-V measurements the sheet carrier density in a Zn0.8 Mg0.2O/ZnO/Zn0.8 Mg0.2O quantum well (QW) structure with a well width of about 5 nm is calculated to be only about 9.0 × 1010 cm− 2. For the films deposited on sapphire 2D growth is observed in the Burton-Cabrera-Frank mode, as confirmed by atomic force microscopy. Step flow growth mode was achieved for the homoepitaxial thin films. Quantum confinement effects have been confirmed by photoluminescence (PL) measurements. Homoepitaxial QWs are more homogeneous (smaller inhomogeneous recombination broadening) than heteroepitaxial QWs.  相似文献   

5.
ZnO films with improved crystallinity were grown on a Si (111) substrate by a two-step growth process using low-temperature ZnO buffer layers. The effect of the ambient gas during the temperature elevation and the in-situ thermal annealing after the growth of the low-temperature buffer layers on the optical and structural properties of the films was investigated by X-ray diffraction (XRD), photoluminescence, and transmission electron microscopy. The use of argon as the ambient gas during the thermal treatment of the buffer layer leads to the enhancement of the (0002) diffraction peak intensity at 2θ ∼ 34.4° and the reduction of the full width at half maximum value in the XRD rocking curve, which means that well-defined and c-axis oriented ZnO film was obtained. The relationship between the thickness of the SiO2 layer between the ZnO buffer layers and Si substrates and the structural and optical properties of the ZnO films is discussed.  相似文献   

6.
用MOCVD方法在p型单晶Si(100)基片上外延SiC层,再用直流溅射在SiC层上生长ZnO薄膜,制备出ZnO/SiC/Si异质结构,用XRD和AFM分析了ZnO/SiC/Si和ZnO/Si异质结构中表层ZnO的结构和形貌的差别,研究了这种异质结构的特性.结果表明,在Si(100)基片上外延生长出的是高取向、高结晶质量的SiC(100)层.这个SiC层缓冲层使在Si基片上外延生长出了高质量ZnO薄膜,因为ZnO与SiC的晶格失配比ZnO与Si的晶格失配更低.  相似文献   

7.
We prepared a ZnO/TiO2/ZnO multi-layer on quartz glass substrate via electron beam evaporation. Optical and structural properties of the ZnO/TiO2/ZnO multi-layer were investigated. The TiO2 buffer layer is found to improve the crystallinity of the ZnO thin film. A green emission of the ZnO thin film deposited on the TiO2 buffer layer was significantly enhanced due to the increased defect concentration of oxygen vacancy. Photoluminesence spectra measured at 9 K revealed that a violet luminescence at 409 nm was attributed to the draft of the donor's defect levels in the ZnO thin film.  相似文献   

8.
Optical characterization of ZnO thin films deposited by Sol-gel method   总被引:1,自引:0,他引:1  
In this paper, ZnO thin film is deposited on Pt/TiO2/SiO2/Si substrate using the sol-gel method and the effect of annealing temperature on the structural morphology and optical properties of ZnO thin films is investigated. The ZnO thin films are crystallized by the heat treatment at over 400°C. The ZnO thin film annealed at 600°C exhibits the greatest c-axis orientation and the Full-Width-Half-Maximum (FWHM) of X-ray peak is 0.4360°. A dense ZnO thin film is deposited by the growth of uniform grains with the increase of annealing temperature but when the annealing temperature increases to 700°C, the surface morphology of ZnO thin film becomes worse by the aggregation of ZnO particles. In the results of surface morphology of ZnO thin film using atomic force microscope (AFM), the surface roughness of ZnO thin film annealed at 600°C is smallest, that is, approximately 1.048 nm. For the PL characteristics of ZnO thin film, it is observed that ZnO thin film annealed at 600°C exhibits the greatest UV (ultraviolet) exciton emission at approximately 378 nm, and the smallest visible emission at approximately 510 nm among ZnO thin films annealed at various temperatures. It is deduced that ZnO thin film annealed at 600°C is formed most stoichiometrically, since the visible emission at approximately 510 nm comes from either oxygen vacancies or impurities.  相似文献   

9.
The dependence of the MgO sputtering power on the structural and optical properties of epitaxially grown MgZnO thin films on GaN/sapphire substrates by radio-frequency magnetron sputtering was investigated. The photoluminescence investigation showed blue shift of 170 meV in MgZnO film grown at the MgO power of 300 W, compared with the ZnO films grown at the MgO power of 0 W, which was attributed to the enhancement of the Mg incorporation at higher power. In addition, increase in Mg mole fraction with increase in sputtering power of MgO was observed from the PL results, and a maximum of 6.6 at.% Mg was obtained at the MgO power of 300 W. The high-resolution X-ray diffraction and transmission electron microscopy (TEM) investigations revealed that the threading dislocation density in the MgZnO thin films increased with increase in sputtering power. Furthermore, microstructural analysis performed by TEM revealed formation of a thin cubic-like phase in the interface between GaN template and MgZnO thin film, together with increased thickness of the interfacial layer with sputtering power.  相似文献   

10.
Xia Zhang  Zhi Yan 《Vacuum》2012,86(12):1871-1874
A novel cubic Zn0.7Mg0.3O film on silicon substrate is conducted by KrF excimer pulsed-laser ablation system. By introducing a thin TiN buffer, layer-by-layer growth of cubic Zn0.7Mg0.3O film epilayer has been realized. The overall growth process was monitored in situ by reflection high-energy electron diffraction (RHEED) method. It was found that the crystallinity and surface morphology of the Zn0.7Mg0.3O films were strongly affected by the TiN buffer layer. The Zn0.7Mg0.3O film obtained at an optimal buffer layer exhibited high quality and good surface. For the metal-insulator-metal (MIM) structure of Pt/Zn0.7Mg0.3O (200 nm)/TiN (20 nm)/Si (400 μm) prepared at the optimal growth conditions achieved a very low leak current density of ∼10−6 A cm−2 at an electric field of 9 × 105 V cm−1 and the permittivity (?r) of about 8.1, agreed well with that of acquired MgO film and MgO single crystal.  相似文献   

11.
ZnO films with c-axis (0002) orientation have been grown on SiO2/Si substrates with an Al2O3 buffer layer by radio frequency magnetron sputtering. Crystalline structures of the films were investigated by X-ray diffraction, atomic force microscopy and scanning electron microscopy. The center frequency of the surface acoustic wave (SAW) device with a 4.8 μm thick Al2O3 buffer layer was measured to be about 408 MHz, which was much higher than that (265 MHz) of ZnO/SiO2/Si structure and approaches that (435 MHz) of ZnO/sapphire. It is a possible way as an alternative for the sapphire substrate for the high frequency SAW device applications, and is also useful to integrate the semiconductor and high frequency SAW devices on the same Si substrate.  相似文献   

12.
ZnO/TiO2 thin films were fabricated on quartz glass substrates by E-beam evaporation. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectra, optical transmittance and photoluminescence. XRD analysis indicates that the TiO2 buffer layer can increase the preferential orientation along the (002) plane of the ZnO film. PL measurements suggest that co-emission of strong UV peak at 378 nm, violet peak at 423 nm and weak green luminescence at 544 nm is observed in the ZnO/TiO2 thin film. The violet luminescence emission at 423 nm is attributed to the interface trap in the ZnO film grain boundaries.  相似文献   

13.
This paper demonstrates the substrate dependency of the c-axis zinc oxide growth in radio-frequency sputtering system. Different deposition conditions were designed to study the influences of Si, SiO2/Si, Au/Ti/Si, and Au/Ti/SiO2/Si substrates on the piezoelectric and crystalline qualities of the ZnO thin films. Experimental results showed that the multilayer of Au/Ti/SiO2/Si-coated silicon substrate provided a surface that facilitated the growth of ZnO thin film with the most preferred crystalline orientation. The 1.5 μm-thick thermally grown amorphous silicon dioxide layer effectively masked the crystalline surface of the silicon substrate, thus allowing the depositions of high-quality 20 nm-thick titanium adhesion layer followed by 150 nm-thick of gold thin film. The gold-coated surface allowed deposition of highly columnar ZnO polycrystalline structures. It was also demonstrated that by lowering the deposition rate at the start of sputtering by lowering RF power to less than one-third of the targeted RF power, a fine ZnO seed layer could be created for subsequent higher-rate deposition. This two-step deposition method resulted in substantially enhanced ZnO film quality compared to single-step approach. The influence of stress relaxation by annealing was also investigated and was found to be effective in releasing most of the residual stress in this layered structure.  相似文献   

14.
Dong Chan Kim 《Thin solid films》2009,518(4):1185-1540
MgZnO films with a small quantity of Mg were grown on c-sapphire substrates coated with a thin MgO buffer layers by metalorganic chemical vapor deposition. The MgO buffer layer causes improvement in the structural, optical, and electrical properties of subsequently deposited MgZnO thin films, when compared to MgZnO films deposited without a buffer layer. The MgZnO films with a MgO buffer layer grown at 330 °C showed the best performance. Transmission electron microscopy revealed that the cubic phase MgO buffer layer promoted the epitaxial behavior of MgZnO, where the planar relationships of the wurtzite-MgZnO/cubic-MgO/sapphire heterostructures mainly were MgZnO(0001)//MgO(001)//sapphire(0001) and MgZnO(11?00)//MgO(110)//sapphire(112?0). It resulted in lower lattice mismatch between MgO and MgZnO by domain epitaxy of 2/1 and enhancement in preferred growth of the MgZnO films along the c-axis.  相似文献   

15.
Undoped ZnO thin films were successfully deposited on Si substrates by RF magnetron sputtering with different substrate temperatures. The dependence was systematically investigated the structural, morphology, chemical state and optical properties of ZnO thin films. Crystal quality, growth orientation and optical properties of ZnO thin films were improved at proper substrate temperature (450 °C) whereas were deteriorated at higher temperature (600 °C). X-ray photoelectron spectroscopy showed that proper substrate temperature promoted the formation of Zn–O bonding, resulting in an improvement of film quality, while higher temperature decreased the formation of the Zn–O bonding and increased the oxygen vacancy due to formation of an amorphous SiO2 layer at the interface of ZnO and Si, resulting in a degradation of film quality. Moreover, the amorphous SiO2 layer is formed by oxygen related to the Zn–O bonding, mainly. Therefore, the experimental results indicate that the substrate temperature plays an important role in the deposition of ZnO film on Si substrate and needs to be carefully selected to suppress a formation of an amorphous SiO2 layer.  相似文献   

16.
ZnO thin films with ZnO buffer layers were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on p-type Si(100) substrates. Before the growth of the ZnO thin films, the ZnO buffer layers were deposited on the Si substrates for 20 minutes and then annealed at the different substrate temperature ranging from 600 to 800 degrees C in oxygen plasma. The structural and optical properties of the ZnO thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and room-temperature (RT) photoluminescence (PL). A narrower full width at half maximum (FWHM) of the XRD spectra for ZnO(002) and a larger grain are observed in the samples with the thermal annealed buffer layers in oxygen plasma, compared to those of the as-grown sample. The surface morphology of the samples is changed from rugged to flat surface. In the PL spectra, near-band edge emission (NBEE) at 3.2 eV (380 nm) and deep-level emission (DLE) around 1.77 to 2.75 eV (700 to 450 nm) are observed. By increasing the annealing temperatures up to 800 degrees C, the PL intensity of the NBEE peak is higher than that of the as-grown sample. These results imply that the structural and optical properties of ZnO thin films are improved by the annealing process.  相似文献   

17.
The influence of oxygen pressure on the structural and electrical properties of vanadium oxide thin films deposited on glass substrates by pulsed laser deposition, via a 5-nm thick ZnO buffer, was investigated. For the purposes of comparison, VO2 thin films were also deposited on c-cut sapphire and glass substrates. During laser ablation of the V metal target, the oxygen pressure was varied between 1.33 and 6.67 Pa at 500 °C, and the interaction and reaction of the VO2 and the ZnO buffer were studied. X-ray diffraction studies showed that the VO2 thin film deposited on a c-axis oriented ZnO buffer layer under 1.33 Pa oxygen had (020) preferential orientation. However, VO2 thin films deposited under 5.33 and 6.67 Pa were randomly oriented and showed (011) peaks. Crystalline orientation controlled VO2 thin films were prepared without such expensive single crystal substrates as c-cut sapphire. The metal-insulator transition properties of the VO2/ZnO/glass samples were investigated in terms of electrical conductivity and infrared reflectance with varying temperatures, and the surface composition was investigated by X-ray photoelectron spectroscopy.  相似文献   

18.
To enhance the optical property of zinc oxide (ZnO) thin film, zinc sulfide (ZnS) thin films were formed on the interfaces of ZnO thin film as a passivation and a substrate layer. ZnO and ZnS thin films were deposited by atomic layer deposition (ALD) using diethyl zinc, H2O, and H2S as precursors. Investigations by X-ray diffraction and transmission electron microscopy showed that ZnS/ZnO/ZnS multi-layer thin films with clear boundaries were achieved by ALD and that each film layer had its own polycrystalline phase. The intensity of the photoluminescence of the ZnO thin film was enhanced as the thickness of the ZnO thin film increased and as ZnS passivation was applied onto the ZnO thin film interfaces.  相似文献   

19.
L.L. Jiang  Q. Li 《Vacuum》2009,83(6):1018-2804
(Ba0.90Ca0.10)(Zr0.25Ti0.75)O3 (BCZT) thin films were grown on Pt/Ti/SiO2/Si substrates without and with a CaRuO3 (CRO) buffer layer using pulsed laser deposition (PLD). The structure and surface morphology of the films have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). At room temperature and 1 MHz, the dependence of dielectric constant and tunability of the films with electric field were investigated; the dielectric constant and tunability are 725 and 47.0%, 877 and 50.4%, respectively, for the BCZT film on Pt/Ti/SiO2/Si substrates without and with the CRO buffer layer at 400 kV/cm. The tunability of the BCZT/CRO heterostructure thin films on Pt/Ti/SiO2/Si substrates was higher than that of the BCZT thin films on Pt/Ti/SiO2/Si substrates. The high constant likely results from the oxide electrode (CRO).  相似文献   

20.
Magnetic properties of BiFeO3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO3 has increased by more than ten times in BiFeO3/ZnO/Si film compared to BiFeO3/Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO3, a technologically important multiferroic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号