首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas phase dissociation rates of silane and germane are measured for HWCVD on a tantalum filament and compared to the a-SiGe:H film composition. The Ge from dissociated germane is converted entirely into film on the substrate and chamber walls. Approximately 85% of the Si from the dissociated silane is converted into film, with the rest incorporated into the filament. The dissociation rate per unit partial pressure of germane is 2-3 times that of silane. The pressure dependence of feed gas depletion rates suggests that the dissociation on the filament is rate limited by filament reactive site availability.  相似文献   

2.
The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, as well as thin film silicon single junction and multijunction junction solar cells. The application of HW-SiNx at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cells with 15.7% efficiency and preliminary tests of our transparent and dense material obtained at record high deposition rates of 7.3 nm/s yielded 14.9% efficiency. We also present recent progress on Hot-Wire deposited thin film solar cells. The cell efficiency reached for (nanocrystalline) nc-Si:H n-i-p solar cells on textured Ag/ZnO presently is 8.6%. Such cells, used in triple junction cells together with Hot-Wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.9% efficiency. Further, in our research on utilizing the HWCVD technology for roll-to-roll production of flexible thin film solar cells we recently achieved experimental laboratory scale tandem modules with HWCVD active layers with initial efficiencies of 7.4% at an aperture area of 25 cm2.  相似文献   

3.
Intrinsic amorphous silicon germanium (i-a-SiGe:H) films with V, U and VU shape band gap profiles for amorphous silicon germanium (a-SiGe:H) heterojunction solar cells were fabricated. The band gap profiles of i-a-SiGe:H were prepared by varying the GeH4 and H2 flow rates during the deposition process. The use of i-a-SiGe:H with band gap profile in an absorber layer for a-SiGe:H heterojunction solar cells was investigated. The solar cell using a VU shape band gap profile shows a higher efficiency compared to other shapes. The highest efficiency obtained for an a-SiGe:H heterojunction solar cell using the VU shape band gap profile technique was 9.4% (Voc = 0.79 V, Jsc = 19.0 mA/cm2 and FF = 0.63).  相似文献   

4.
Microcrystalline silicon (μc-Si:H) solar cells with i-layers deposited by hot wire chemical vapor deposition (HWCVD) exhibit higher open circuit voltage and fill factor than the cells with i-layers deposited by plasma enhanced (PE)-CVD. Inserting an intrinsic μc-Si:H p/i buffer layer prepared by HWCVD into PECVD cells nearly eliminates these differences. The influence of buffer layer properties on the performance of μc-Si:H solar cells was investigated. Using such buffer layers allows to apply high deposition rate processes for the μc-Si:H i-layer material yielding a high efficiency of 10.3% for a single junction μc-Si:H solar cell.  相似文献   

5.
Hot-wire CVD amorphous Si materials for solar cell application   总被引:1,自引:0,他引:1  
Qi Wang 《Thin solid films》2009,517(12):3570-15374
Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed.  相似文献   

6.
Different composite films, including Al, Ag/NiCr/Al and Al2O3-doped ZnO (AZO)/Ag/NiCr (AZO)/Al, were utilized as the back reflectors for p-i-n hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cells. The experimental results indicated that the AZO leyer between silicon layers and Ag/NiCr/Al back reflector was effect in improving solar cell performance, mainly owing to an increase in short-circuit current density (Jsc) of the solar cells. In addition, the thickness of AZO film could strongly affect the Jsc. The highest solar cell performance was achieved at the AZO thickness of about 90 nm. A nickel-chromium (NiCr) or AZO film was inserted between Ag and Al as a diffusion barrier against mutual diffusion of them, the similar performances of solar cells were achieved. So AZO/Ag/NiCr (AZO)/Al could be utilized as an advanced AZO/metal back reflector for p-i-n a-SiGe:H solar cells.  相似文献   

7.
We have improved the quality of our narrow bandgap a-SiGe:H grown by hot-wire chemical vapor deposition (HWCVD) by decreasing our W filament diameter and our substrate temperature. We now grow a-SiGe:H with Tauc bandgaps below 1.5 eV having a photoresponse equal to or better than our plasma enhanced CVD grown alloys. We enhanced the transport properties—as measured by the photoconductivity frequency mixing technique—relative to previous HWCVD results. These improved alloys do not necessarily show an improvement in the degree of structural heterogeneity on the nanometer scale as measured by small-angle X-ray scattering. Decreasing both the filament temperature and substrate temperature produced a film with relatively low structural heterogeneity while photoluminescence showed an order of magnitude increase in defect density for a similar change in the process.  相似文献   

8.
We investigated the optimal deposition conditions of a thin indium tin oxide (ITO) film on an amorphous silicon (a-Si) single-junction solar cell using pulsed DC magnetron sputtering. Thin ITO films were deposited while power, deposition time, pressure, gas flow and temperature were varied to find such conditions. The efficiency of a-Si solar cells with ITO films was 6.65% at the optimal conditions — a pulsed DC power of 40 W, a deposition time of 460 s, a pressure of 0.53 Pa, gas flow of 16 sccm and 151 °C. On the other hand, an a-SiGe tandem solar cell with the ITO films made at the optimal conditions yields an efficiency of 7.20%. We have also examined the surface morphology of ITO coated a-Si solar cells, using atomic force microscopy. Interestingly, a change in power does not alter the surface morphology at small length scales, whereas at large scales, the lower power sample had a lower surface roughness than the samples made with higher powers. We also find that for the range of deposition conditions examined, the value of the roughness exponent does not change with α ? 2/3 and a thin layer of ITO does not modify the surface morphology significantly.  相似文献   

9.
This article reviews the results obtained in Kaiserslautern for research and development on amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon based thin film solar cells as well as heterojunction solar cells applying entirely or mainly the HWCVD. The activities of the group cover the development of appropriate intrinsic and doped a-Si:H and μc-Si:H films for the different solar cell structures, the realization of many types of such structures with different deposition sequences and the detailed study of their stability behavior. Also the preparation of an HW solar cell on medium size area is demonstrated. Initial and stabilized conversion efficiencies are presented and discussed for the different cell structures realized within about ten years of activity. Main focus will be on the recent activities dealing with the integration of μc-Si:H films into solar cell structures and the extensive study of their stability behavior. In addition the degradation of the applied Ta catalyzer was intensively investigated. Finally advantages and disadvantages will be discussed concerning the commercial use of the HWCVD for solar cell fabrication.  相似文献   

10.
Phosphorous-doped microcrystalline silicon (μc-Si) films were prepared using hot-wire chemical vapor deposition (HWCVD). Structural, electrical and optical properties of these thin films were systematically studied as a function of PH3 gas mixture ratio. We report recent results for p-type crystalline silicon-based heterojunction (HJ) solar cells using the HWCVD n-μc-Si film to form an n-p junction. The surface morphology of the crystalline Si substrate after hydrogen treatment was examined using atomic force microscopy. A transfer length method was used to modify the indium-tin-oxide (ITO) deposition parameters in order to reduce front ITO/n-μc-Si contact resistance. In our best solar cell sample (1 cm2) without any buffer layer, the conversion efficiency of 15.1% has been achieved with an open circuit voltage of 0.615 V, fill factor of 0.71 and short circuit current density of 34.6 mA/cm2 under 100 mW/cm2 condition. The spectral response of this cell will also be discussed.  相似文献   

11.
Sneha Gupta 《Thin solid films》2008,516(5):850-852
Aluminum-induced in situ crystallization (AIC) of amorphous silicon films deposited by hot wire chemical vapor deposition (HWCVD) on glass is demonstrated. Aluminum was deposited at temperatures varying from room temperature to 300 °C on HWCVD a-Si:H films. The AIC was observed to take place in situ during the deposition of Al films, when the glass/a-Si:H temperature is kept 300 °C. A 20-nm Al film was effective in inducing crystallization of about 63% in the a-Si:H film. Thus, separate post-deposition annealing step can be avoided. For an Al film thickness comparable to the amorphous silicon film deposited at an optimum deposition rate, crystallization at temperature as low as 200 °C is observed. It was also observed that the growth pattern of c-Si in case of AIC without post-deposition annealing was identical to AIC with annealing step.  相似文献   

12.
Jinsu Yoo 《Thin solid films》2007,515(19):7611-7614
Hydrogenated films of silicon nitride (SiNx:H) is commonly used as an antireflection coating as well as passivation layer in crystalline silicon solar cell. SiNx:H films deposited at different conditions in Plasma Enhanced Chemical Vapor Deposition (PECVD) reactor were investigated by varying annealing condition in infrared (IR) heated belt furnace to find the optimized condition for the application in silicon solar cells. By varying the gases ratio (R = NH3/SiH4 + NH3) during deposition, the SiNx:H films of refractive indices 1.85-2.45 were obtained. Despite the poor deposition rate, the silicon wafer with SiNx:H film deposited at 450 °C showed the best effective minority carrier lifetime. The film deposited with the gases ratio of 0.57 shows the best peak of carrier lifetime at the annealing temperature of 800 °C. The single crystalline silicon solar cells fabricated in conventional industrial production line applying the optimized film deposition and annealing conditions on large area substrates (125 mm × 125 mm) were found to have the conversion efficiencies as high as 17.05 %. Low cost and high efficiency single crystalline silicon solar cells fabrication sequence employed in this study has also been reported in this paper.  相似文献   

13.
Laser-induced crystallization of SiGe was investigated using a crystallization technique of pulsed excimer KrF laser irradiation on a-SiGe films that were prepared by plasma-enhanced chemical vapor deposition on quartz. The crystallized SiGe sample was investigated by scanning electronic microscopy (SEM); the SiGe microcrystals are 0.5 m in size and embedded in the a-SiGe:H matrix. Strong photoluminescence with two peaks at 720 and 750 nm was observed at room temperature in the crystallized film, whereas the uncrystallized a-SiGe:H films emit do not emit light in the visible range. This indicates that laser-induced crystallization can be used to improve the luminescence efficiency for Si-based materials.  相似文献   

14.
Amorphous silicon films have been made by HWCVD at a very low substrate temperature of ≤ 100 °C (in a dynamic substrate heating mode) without artificial substrate cooling, through a substantial increase of the filament-substrate distance (∼ 80 mm) and using one straight tantalum filament. The material is made at a reasonable deposition rate of 0.11 nm/s. Optimized films made this way have device quality, as confirmed by the photosensitivity of > 105. Furthermore, they possess a low structural disorder, manifested by the small Γ/2 value (half width at half maximum) of the transverse optic (TO) Si-Si vibration peak (at 480 cm− 1) in the Raman spectrum of ∼ 30.4 cm− 1, which translates into a bond angle variation of only ∼ 6.4°. The evidence gathered from the studies on the structure of the HWCVD grown film by three different techniques, Raman spectroscopy, spectroscopic ellipsometry and transmission electron microscopy, indicate that we have been able to make a photosensitive material with a structural disorder that is smaller than that expected at such a low deposition temperature.Tested in a p-i-n solar cell on Asahi SnO2:F coated glass (without ZnO at the back reflector), this i-layer gave an efficiency of 3.4%. To our knowledge, this is the first report of a HWCVD thin film silicon solar cell made at such a low temperature.  相似文献   

15.
S.K. Singh 《Thin solid films》2008,516(5):785-788
Hydrogenated amorphous silicon carbon (a-SiC:H) ultra thin films obtained by Hot wire chemical vapor deposition (HWCVD) have been shown to act as efficient diffusion barriers for copper on inter metal dielectric (IMD) layers which are of great significance for ultra-large scale integration (ULSI) circuits. In this work, we have studied the influence of the a-SiC:H barrier layer obtained by HWCVD which has implications towards issues related to the resistance to electromigration of Cu in the low dielectric (low-k) hydrogen silsesquioxane (HSQ) film. The presence of the ultra thin a-SiC:H film maintains the integrity of the Cu metal not only by suppressing Cu diffusion but also by increasing its crystallinity, which would have implications with respect to the mean time to failure (MTF) arising from metal electromigration. Though, we demonstrate this aspect on the low-k (HSQ)/Cu system, this should yield similar benefits for other low-k dielectric materials too.  相似文献   

16.
From TEM, XRD and Raman measurements, we compare the crystallization kinetics when HWCVD and PECVD a-Si:H films, containing different initial film hydrogen contents (CH), are crystallized by annealing at 600 °C. For the HWCVD films, the nucleation rate increases, and the incubation time and the full width at half maximum (FWHM) of the XRD (111) peak decrease with decreasing film CH. However, the crystallization kinetics of HWCVD and PECVD films of similar initial film CH are quite different, suggesting that other factors beside the initial film hydrogen content affect the crystallization process. Even though the bonded hydrogen evolves very early from the film during annealing, we suggest that the initial spatial distribution of hydrogen plays a critical role in the crystallization kinetics, and we propose a preliminary model to describe this process.  相似文献   

17.
Hot-wire chemical vapor deposition (HWCVD) and plasma-enhanced chemical vapor deposition (PECVD) of Si thin films show different growth kinetic processes. According to the fractal analysis, the root-mean-square surface roughness δ and the film thickness d have the relation of δ ∼ dβ, where β is the dynamic scaling exponent related to the film growth mechanism. It was found that β is 0.44 for Si films prepared by HWCVD and 0.24 by PECVD. The former refers to a stochastic deposition while the latter corresponds to the finite diffusion of the radicals. Monte Carlo simulations indicate that the sticking process of growth radicals play an important role in determining the morphology of Si films.  相似文献   

18.
Hot-wire chemical vapour deposition (HWCVD) was applied for the deposition of intrinsic protocrystalline (proto-Si:H) and microcrystalline silicon (μc-Si:H) absorber layers in thin film solar cells. For a single junction μc-Si:H n-i-p cell on a Ag/ZnO textured back reflector (TBR) with a 2.0 μm i-layer, an 8.5% efficiency was obtained, which showed to be stable after 750 h of light-soaking. The short-circuit current density (Jsc) of this cell was 23.4 mA/cm2, with a high open-circuit voltage (Voc) and fill factor (FF) of 0.545 V and 0.67.Triple junction n-i-p cells were deposited using proto-Si:H, plasma-deposited proto-SiGe:H and μc-Si:H as top, middle and bottom cell absorber layers. With Ag/ZnO TBR's from our lab and United Solar Ovonic LLC, respective initial efficiencies of 10.45% (2.030 V, 7.8 mA/cm2, 0.66) and 10.50% (2.113 V, 7.4 mA/cm2, 0.67) were achieved.  相似文献   

19.
Our research aiming to improve silicon photovoltaic materials and devices extensively utilizes hot-wire chemical vapor deposition (HWCVD). We have recently achieved 18.2% heterojunction silicon solar cells by applying HWCVD a-Si:H front and back contacts to textured p-type silicon wafers. This is the best reported p-wafer heterojunction solar cell by any technique. We have also dramatically improved the quality of HWCVD silicon epitaxy and recently achieved 11 μm of epitaxial growth at a rate of 110 nm/min.  相似文献   

20.
《Thin solid films》2006,515(2):452-455
Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of μc-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, Xc, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of μc-Si:H films with a high crystalline content is enhanced and the stability of μc-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP μc-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of μc-Si:H films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号