首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotubes were synthesized using Ni–Mo–Mg oxide catalyst prepared by sol–gel technique. Carbon nanotubes were formed in situ by the reduction of nickel oxide (NiO) and molybdenum oxide (MoO3) to Ni and Mo by a gas mixture of nitrogen, hydrogen and cyclohexane at 750 °C. Scanning Electron Microscopy (SEM) was used to confirm the formation of carbon nanotubes (CNTs). The pore size distribution of carbon nanotubes (CNTs) was investigated by N2 adsorption and desorption. It was found that the pore size fell into the mesopore range: 2 < d < 50 nm. Interpretation was also made using Raman spectroscopy, Diffuse reflectance spectroscopy, X-ray diffraction and ESR spectra. This method is found to produce a very high yield weighing over 20 times of the catalyst. Based on the experimental conditions and results obtained a possible growth mechanism of the carbon nanotubes is proposed.  相似文献   

2.
Vertically aligned carbon nanotubes (VACNTs) have been synthesized on silicon substrates in a thermal catalytic chemical vapor reactor using natural palm oil as the carbon source. Field Emission Scanning Electron Microscopy (FESEM) and microraman analysis revealed dense bundles of mixed multi-walled and single-walled carbon nanotubes (CNTs). The diameters of the single-walled carbon nanotubes (SWCNTs) were estimated to be between 0.6 nm and 1.2 nm. Thermogravimetric analysis (TGA) results showed that 90% purity was achieved at the expense of 4% weight catalyst material.  相似文献   

3.
Ceria decorated carbon nanotubes (CNTs) were in-situ synthesized by chemical vapor deposition using a Ni/Ce/Cu catalyst. Ceria nanoparticles, with a diameter of about 3-8 nm, were highly dispersed on the CNTs, and it is believed that they are formed at the same time as the CNTs.  相似文献   

4.
We report in situ successive depositions of nickel nanoparticles and carbon nanotubes (CNTs) on ordered mesoporous silica films used as template for the catalyst particles. The mesoporous films are synthesized by the evaporation-induced self-assembly process from tetraethyl orthosilicate derived oligomers and a di-block copolymer from dip-coating deposition method. The substrates are decorated with Ni nanoparticles through Ion Beam Deposition and posterior annealing to induce metal coalescence in the mesoporous cavities. CNTs were then grown by Chemical Vapor Deposition in the presence of an electric field. These techniques provide a simple control method producing ordered arrangements of catalyst nanoparticles and ordered nanostructures for large area applications.  相似文献   

5.
Solid carbon nanofibers (CNFs), hollow CNFs, metal-filled carbon nanotubes (CNTs), and carbon onions were synthesized by chemical vapor deposition (CVD) using a novel Ni/Y catalyst supported on Cu at different reaction temperatures. XRD, TEM, and EDS analyses reveal that the structure of the catalyst changes with increasing reaction temperature. The evolution of Y doped in Ni directly influences the morphologies of the products. At relatively low temperature, Y is doped in Ni and causes CNF formation, and when the temperature is increased to above 650 °C, Y separates from Ni as yttria nanoparticles and carbon onions are synthesized. The catalyst evolution and carbon nanostructure growth mechanism are discussed in detail.  相似文献   

6.
Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600°C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500°C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.  相似文献   

7.
The effect of cobalt (Co) and nickel (Ni) nanoparticle catalysts on the growth of carbon nanotubes (CNTs) were studied, where the CNTs were vertically grown by plasma enhanced chemical vapour deposition (PECVD) method. The growth conditions were fixed at a temperature of 700 °C with a pressure of 1000 mTorr for 40 minutes with various thicknesses of sputtered metal catalysts. Only multi-walled carbon nanotubes are present from the growth as large average diameter of outer tube (~10–30 nm) were measured for both of the catalysts used. Experimental results show that high density of CNTs was observed especially towards thicker catalysts layers where larger and thicker nanotubes were formed. The nucleation of the catalyst with various thicknesses was also studied as the absorption of the carbon feedstock is dependent on the initial size of the catalyst island. The average diameter of particle size increases from 4 to 10 nm for Co and Ni catalysts. A linear relationship is shown between the nanoparticle size and the diameter of tubes with catalyst thicknesses for both catalysts. The average growth rate of Co catalyst is about 1.5 times higher than Ni catalyst, which indicates that Co catalyst has a better role in growing CNTs with thinner catalyst layer. It is found that Co yields higher growth rate, bigger diameter of nanotube and thicker wall as compared to Ni catalyst. However, variation in Co and Ni catalysts thicknesses did not influence the quality of CNTs grown, as only minor variation in IG/ID ratio from Raman spectra analysis. The study reveals that the catalysts thickness strongly affects not only nanotube diameter and growth rate but also morphology of the nanoparticles formed during the process without influencing the quality of CNTs.  相似文献   

8.
Mesoporous silica films were used as host for metal-based (Me = Fe, Co, Ni) nanoparticles via wet impregnation at pH = 5. A hydrogen ion beam was used to reduce the metallic oxide and hydroxides, previously detected by X-ray photoelectron spectroscopy, in metals. Chemical vapor deposition processes at three different conditions varying the acetylene-nitrogen proportion were performed on the mesoporous films decorated by different metal-based nanoparticles. The grown carbon nanostructures were characterized by high-resolution transmission electron microscopy and scanning electron microscopy. The ability to grow carbon nanostructures decreases in the following order: Fe > Co > Ni. When pure acetylene is used, iron allows to form graphene sheets around the metal catalyst like carbon nanocapsules, whereas cobalt allows to form structures that seem to be carbon nanotubes. Nitrogen leads to control the size and shape of carbon nanocapsules for iron catalyst and avoid the growth of such carbon nanotube-like structures for cobalt catalyst.  相似文献   

9.
To date, focus of the research activities in nanoscience was to control the chemical vapor deposition (CVD) growth of carbon nanotubes (CNTs) by changing the precursor pressure and process temperature. The effect of the precursor flow rate and process time on CNTs growth parameters has been overlooked in past studies and therefore is very little known. This study was focused on the optimization of the ethylene flow rate and CVD process time for CNTs growth over Fe2O3/Al2O3 catalyst in a fluidized bed chemical vapor deposition (FBCVD) reactor, operating at atmospheric pressure. Argon and hydrogen were considered as the carrier and supporting gases, respectively. Transmission electron microscope (TEM) and Scanning Electron Microscopy (SEM) were used to investigate the surface morphology, nanostructures, purity and yield of the grown CNTs. In-depth analysis revealed an increase in tube length, yield and the carbon concentration with ethylene flow rate in the range of 50–110 sccm. However, an inverse relationship between flow rate and tube diameter distribution was predicted in the given work. The most favorable results were obtained at an ethylene flow rate of 100 sccm and a CVD process time of 60 minutes. The dense and homogeneous growth of relatively pure nanotubes of increased tube length and narrow diameter distribution, in the range of 20–25 nm, was observed at optimized flow rate and process time.  相似文献   

10.
采用化学气相沉积法(CVD),在溅射了镍薄膜的硅基底上制备了定向碳纳米管薄膜。对镍薄膜的氨气预处理过程及其机理进行了研究。结果发现预处理后的岛状区域随着薄膜厚度的增加而增加,纳米粒子区域的变化则与之相反。对5nm的镍薄膜进行预处理能获得细化和均匀分布的纳米粒子,有利于定向碳纳米管的生长。碳纳米管的生长过程及其细微结构与温度有很大关系。碳源的分解、碳原子在催化剂内部的扩散以及催化剂粒子的团聚三者之间的竞争决定了碳纳米管的生长情况。本文分析了碳纳米管的顶部生长模式及该模式下催化剂粒子的形态变化。  相似文献   

11.
A novel multi-branching carbon nanotube (CNT) structure is synthesized by direct current plasma enhanced chemical vapor deposition. The structure consists of aligned CNTs which have branches of smaller diameters growing aligned along a direction perpendicular to the original CNT. The mechanism of branching is explained in terms of a self-seeding of Ni catalyst which is transferred by sputtering from the original catalyst particles in the backbone CNTs to the walls of those CNTs. It is also shown that the branching induced a large increase in surface area and total nanotube length and can be beneficial in supporting very fine Pt nanoparticles for fuel cell and other catalytic applications. Such an array of Y-junction nanostructures could be useful for the fabrication of a high-density array of nanoelectronics switches and transistors.  相似文献   

12.
Well graphitised nanocarbons including onion-like fullerenes and single- and multi-walled carbon nanotubes (CNTs) were synthesised in high yield by automatic arc-discharge method in solution. This technique is considered a low-cost method since it does not require any expensive equipment. Herein, an arc discharge full automatic set-up was used for fabrication of CNTs which enables controlling of the gap between the two electrodes and the voltage as well. Carbon nanostructures under a controlled amount of voltage (from 10 to 30 V) were synthesised where Ni : Mo as a catalyst and LiCl 0.25 M as a solution were used. Subsequently, a modified acid treatment method was applied as purification stage of the products. The production rate of CNTs was as high as 7.7 mg min?1 while the voltage was set at 30 V. Scanning electron microscopy and transmission electron microscopy as well as Raman spectroscopy were employed to study the morphology of these carbon nanostructures. The results indicated that CNTs synthesised at a voltage of 30 V had the best quality and elongated straight structures. The mechanism of the voltage conditions for preparing nanocarbons as well as their characterisation are discussed.  相似文献   

13.
An in-situ study of carbon deposition parameters by the method of chemical vapor deposition (CVD) from methane is used in order to estimate the time of the deactivation catalyst (Fe/Mo catalyst supported on alumina (AI2O3)). The deposition process is studied by measuring the weight change of the sample using a microbalance. The effect of the operating parameters, such as temperature, feed concentration, and catalyst composition, on the deposition rate and morphology of the deposits is investigated. Based on the initial weight of the catalyst, the relative weight gain of the sample due to carbon deposition on the catalyst is higher than 300% in a few minutes of the deposition process but the deposition rate reduces in more than 100 min. The carbon material characterized with Scanning Electron Microscopy (SEM) and Raman Spectroscopy and it is found to consist of carbon nanostructures.  相似文献   

14.
Sharma R  Chee SW  Herzing A  Miranda R  Rez P 《Nano letters》2011,11(6):2464-2471
In situ dynamic imaging, using an environmental transmission electron microscope, was employed to evaluate the catalytic activity of Au/SiO(2), Ni/SiO(2), and Au-Ni/SiO(2) nanoparticles for the formation of one-dimensional (1-D) carbon nanostructures such as carbon nanofibers (CNFs) and nanotubes (CNTs). While pure-Au thin-film samples were inactive for carbon deposition at 520 °C in 0.4 Pa of C(2)H(2), multiwalled CNTs formed from Ni thin films samples under these conditions. The number of nanoparticles active for CNF and CNT formation increased for thin films containing 0.1 mol fraction and 0.2 mol fraction of Au but decreased as the overall Au content in thin films was increased above 0.5 mol fraction. Multiwalled CNTs formed with a root growth mechanism for pure Ni samples, while with the addition of 0.1 mol fraction or 0.2 mol fraction of Au, CNFs were formed via a tip growth mechanism at 520 °C. Single-walled CNTs formed at temperatures above 600 °C in samples doped with less than 0.2 mol fraction of Au. Ex situ analysis via high-resolution scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDS) revealed that catalytically active particles exhibit a heterogeneous distribution of Au and Ni, where only a small fraction of the overall Au content was found in the portion of each particle actively involved in the nucleation of graphitic layers. Instead, the majority of the Au was found to be segregated to an inactive capping structure at one the end of the particles. Using density-functional theory calculations, we show that the activation energy for bulk diffusion of carbon in Ni reduces from ≈1.62 eV for pure Ni to 0.07 eV with the addition of small amounts (≈0.06 mol fraction) of Au. This suggests that the enhancement of C diffusion through the bulk of the particles may be responsible for improving the number of particles active for nucleating the 1-D carbon nanostructures and thereby the yield.  相似文献   

15.
Zhang H  Du N  Wu P  Chen B  Yang D 《Nanotechnology》2008,19(31):315604
A novel approach has been developed to synthesize magnetic nanoparticle and carbon nanotube (CNT) core-shell nanostructures, such as CoO/CNTs and Mn(3)O(4)/CNTs, by the nonaqueous solvothermal treatment of metal carbonyl on CNT templates using hexane as the solvent. The morphological and structural characterizations indicate that numerous cubic CoO or tetragonal Mn(3)O(4) nanoparticles are deposited on the surfaces of the CNTs to form CNT-based core-shell nanostructures. It is revealed that the hydrophobic interaction between nanoparticles and CNTs in hexane plays the critical role for the formation of CNT-based core-shell nanostructures. A physical property measurement system (PPMS-9, Quantum Design) analysis indicates that the CoO/CNT core-shell nanostructures show weak ferromagnetic performance at 300?K due to the ferromagnetic Co clusters and the uncompensated surface spin states, while the Mn(3)O(4)/CNT core-shell nanostructures display ferromagnetic behavior at low temperature (34.5?K), which transforms into paramagnetic behavior with increasing temperature.  相似文献   

16.
以乙酰丙酮铁为催化剂源,三甘醇为溶剂,通过溶剂热法在碳纤维表面负载催化剂前驱体,在H2与N2中一定温度下进行还原,采用化学气相沉积法在碳纤维表面生长碳纳米管。研究了催化剂的负载条件和碳纳米管的生长条件,采用XRD、FTIR、RAMAN对乙酰丙酮铁在三甘醇中反应在碳纤维表面负载催化剂前驱体产物进行分析,用SEM、TEM对催化剂前驱体粒子及碳纳米管的形貌进行表征。结果表明:催化剂前驱体为粒径30nm左右的Fe3O4颗粒,当催化剂的还原温度为415℃、还原时间为60min时,Fe3O4颗粒还原成纳米Fe颗粒;当碳纳米管的生长温度为750℃、生长时间为30min、气流体积比为V(N2)∶V(H2)∶V(C2H2)=50∶10∶10时能在碳纤维表面生长出形貌均一、管径为30~60nm的碳纳米管。  相似文献   

17.
Improved field emission property of carbon nanotubes (CNTs) is achieved by using NiTi alloy film as catalyst under optimized condition. The NiTi alloy films are prepared by magnetron co-sputtering process and the CNTs films are synthesized by thermal chemical vapor deposition. With the increase of the Ni/Ti ratio from 19 at.% to 95 at.%, the CNTs density increases from discrete cluster to dense network, and the optimized field emission property of CNTs film is found at the medium density. However, the field emission property is significantly enhanced when the Ni/Ti ratio is about 76 at.%, and it is supposed to attribute to the combined effect of the hills-like surface enhancement and the intrinsic emission properties of CNTs.  相似文献   

18.
采用多元醇法制备镁-镍合金纳米粉末,并以此为催化剂制备纳米碳管,利用比表面和孔径分布测定仪、X射线衍射仪和透射电镜,研究镁-镍合金催化剂的性能和纳米碳管的生长模式。结果表明:Mg∶Ni值对镁-镍合金催化剂特性影响较大,其中Mg∶Ni为1的催化剂颗粒比表面积较大且平均粒径较小;聚乙烯吡咯烷酮(PVP)用量增大,有利于提高催化剂颗粒的比表面积、减小平均粒径,但用量过大不利于Mg2Ni合成。在以镁-镍合金为催化剂制备碳纳米管的过程中,首先在催化剂表面形成碳膜,随后形成的碳膜将前期形成的碳膜及催化剂颗粒向外推挤,催化剂颗粒移动后遗留下中空隧道,最终形成碳管,由于纳米碳管尖端的催化剂颗粒反应后失去催化活性,碳管的生长动力主要来自碳管根部。  相似文献   

19.
In this paper we report the effect of Fe film thickness on the growth, structure and electron emission characteristics of carbon nanotubes (CNTs) and multilayer graphene deposited on Si substrate. It is observed that the number of graphitic shells in carbon nanostructures (CNs) varies with the thickness of the catalyst depending on the average size of nanoparticles. Further, the Fe nanoparticles do not catalyze beyond a particular size of nanoclusters leading to the formation of multilayer graphene structure, instead of carbon nanotubes (CNTs). It is observed that the crystallinity of CNs enhances upon increasing the catalyst thickness. Multilayer graphene structures show improved crystallinity in comparison to CNTs as graphitic to defect mode intensity ratio (ID/IG) decreases from 1.2 to 0.8. However, I2D/IG value for multilayer graphene is found to be 1.1 confirming the presence of at least 10 layers of graphene in these samples. CNTs with smaller diameter show better electron emission properties with enhancement factor (γC = 2.8 × 103) in comparison to multilayer graphene structure (γC = 1.5 × 103). The better emission characteristics in CNTs are explained due to combination of electrons from edges as well as centers in comparison to the multilayer graphene.  相似文献   

20.
This study demonstrates the first example of the use of a metal-free catalyst for the continuous synthesis of carbon nanotubes (CNTs) by chemical vapor deposition (CVD). In this paper silica nanoparticles produced from the thermal decomposition of PSS-(2-(trans-3,4-Cyclohexanediol)ethyl)-Heptaisobutyl substituted (POSS) were used as catalyst and ethanol was served as both the solvent and the carbon source for nanotube growth. The POSS/ethanol solution was nebulized by an ultrasonic beam. The tiny mists were continuously introduced into the CVD reactor for the growth of CNTs. The morphology and structure of the CNTs have been investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. The obtained CNTs have a multi-walled structure with diameters mainly in the size range from 13 to 16 nm. Detailed investigations on the growth conditions indicate that the growth temperature and POSS concentration are important for achieving high-quality nanotubes, and that the existing of small amount of water in ethanol is effective to remove amorphous carbon species during the formation of CNTs. The mass production of CNTs without any metal contaminant will provide a chance for investing and understanding the intrinsic properties of CNTs and applications particularly in nanoelectronics and biomedicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号