首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyunghoon Kim 《Thin solid films》2010,518(22):6348-6351
We deposited Ni (15 nm)/Au (30 nm) layers on a-InGaZnO in order to produce low-resistance ohmic contacts by using a dc sputtering method. The samples were annealed at various temperatures for 5 min in Ar ambient. The electrical and the structural properties of the Ni/Au contact to a-InGaZnO were investigated. According to the current-voltage measurements, both the as-deposited and low-temperature annealed samples showed an ohmic behavior. The specific contact resistance of the as-deposited sample was 4.1 × 10− 5 Ω cm2, which was the lowest value. Further increasing the temperature above 400 °C led to an increase in the specific contact resistance. This is due to the chemical intermixing and formation of the oxide in the contact interface caused by the post-growth thermal annealing.  相似文献   

2.
D.Y. Ku  I. Lee  T.S. Lee  B. Cheong  W.M. Kim 《Thin solid films》2006,515(4):1364-1369
In this study, indium-zinc oxide (IZO) thin films have been prepared at a room temperature, 200 and 300 °C by radio frequency magnetron sputtering from a In2O3-12 wt.% ZnO sintered ceramic target, and their dependence of electrical and structural properties on the oxygen content in sputter gas, the substrate temperature and the post-heat treatment was investigated. X-ray diffraction measurements showed that amorphous IZO films were formed at room temperature (RT) regardless of oxygen content in sputter gas, and micro-crystalline and In2O3-oriented crystalline films were obtained at 200 and 300 °C, respectively. From the analysis on the electrical and the structural properties of annealed IZO films under Ar atmosphere at 200, 300, 400 and 500 °C, it was shown that oxygen content in sputter gas is a critical parameter that determines the local structure of amorphous IZO film, stability of amorphous phase as well as its eventual crystalline structure, which again decide the electrical properties of the IZO films. As-prepared amorphous IZO film deposited at RT gave specific resistivity as low as 4.48 × 10− 4 Ω cm, and the highest mobility value amounting to 47 cm2/V s was obtained from amorphous IZO film which was deposited in 0.5% oxygen content in sputter gas and subsequently annealed at 400 °C in Ar atmosphere.  相似文献   

3.
Niobium was deposited as an electrode material on an n-type SiC wafer for power device application. The reaction microstructure and electrical contact property were investigated after annealing at 700 to 1000 °C and compared with the results for an Ni electrode. Microstructure-related problems of the Ni electrode could be resolved without sacrificing ohmic contact behavior with a low contact resistivity of 1.53 × 10− 4 Ω cm2. Carbon precipitation was completely eliminated with Nb by the formation of carbides, leading to good adhesion upon wire bonding process. At the reaction interface, Nb5Si3 was formed in an epitaxial relationship with SiC, leading to a good interface contact property as well as good interface adhesion.  相似文献   

4.
A procedure to dope n-type Cr2 − xTixO3 thin films is proposed. Besides doping the material, at the same time the method forms ohmic contacts on TixCr2 − xO3 films. It consists on the deposition of 10 nm Ti and 50 nm Au, followed by thermal annealing at 1000 °C for 20 min in N2 atmosphere. Ohmic contacts were formed on three samples with different composition: x = 0.17, 0.41 and 1.07 in a van der Pauw geometry for Hall effect measurements. These measurements are done between 35 K and 373 K. All samples showed n-type nature, with a charge carrier density (n) on the order of 1020 cm− 3, decreasing as x increased. As a function of temperature, n shows a minimum around 150 K, while the mobilities have an almost constant value of 11, 28 and 7 cm2V− 1 s− 1 for x = 0.17, 0.41 and 1.07, respectively.  相似文献   

5.
In this study, CuFeO2 thin films were deposited onto quartz substrates using a sol-gel and a two-step annealing process. The sol-gel-derived films were annealed at 500 °C for 1 h in air and then annealed at 600 to 800 °C for 2 h in N2. X-ray diffraction patterns showed that the annealed sol-gel-derived films were CuO and CuFe2O4 phases in air annealing. When the films were annealed at 600 °C in N2, an additional CuFeO2 phase was detected. As the annealing temperature increased above 650 °C in N2, a single CuFeO2 phase was obtained. The binding energies of Cu-2p3/2, Fe-2p3/2, and O-1s were 932.5 ± 0.1 eV, 710.3 ± 0.2 eV and 530.0 ± 0.1 eV for CuFeO2 thin films. The chemical composition of CuFeO2 thin films was close to its stoichiometry, which was determined by X-ray photoelectron spectroscopy. Thermodynamic calculations can explain the formation of the CuFeO2 phase in this study. The optical bandgap of the CuFeO2 thin films was 3.05 eV, which is invariant with the annealing temperature in N2. The p-type characteristics of CuFeO2 thin films were confirmed by positive Hall coefficients and Seebeck coefficients. The electrical conductivities of CuFeO2 thin films were 0.28 S cm− 1 and 0.36 S cm− 1 during annealing at 650 °C and 700 °C, respectively, in N2. The corresponding carrier concentrations were 1.2 × 1018 cm− 3 (650 °C) and 5.3 × 1018 cm− 3 (700 °C). The activation energies for hole conduction were 140 meV (650 °C) and 110 meV (700 °C). These results demonstrate that sol-gel processing is a feasible preparation method for delafossite CuFeO2 thin films.  相似文献   

6.
The preparations of the 20-period of a Si quantum dot (QD)/SiNx multilayer in a hot-wire chemical vapor deposition (HWCVD) chamber is presented in this paper. The changes in the properties of Si-QDs after the post deposition annealing treatment are studied in detail. Alternate a-Si:H and SiNx layers are grown in a single SiNx deposition chamber by cracking SiH4, and SiH4 + NH3, respectively at 250 °C. The as-deposited samples are annealed in the temperature range of 800 °C to 950 °C to grow Si-QDs. All the samples are characterized by confocal micro Raman, transmission electron microscope (TEM), and photoluminescence (PL) to study the changes in the film structures after the annealing treatment. The micro Raman analysis of the samples shows the frequency line shifting from 482 cm− 1 to 500 cm− 1 indicating the Si transition from an amorphous to a crystalline phase. The TEM micrograph inspection indicates the formation of Si-QDs of size 3 to 5 nm and a density of 5 × 1012/cm2. The high resolution TEM micrographs show an agglomeration of Si-QDs with an increase in the annealing temperature. The PL spectra show a peak shifting from 459 nm to 532 nm with increasing the annealing temperature of the film.  相似文献   

7.
In this paper, the optimization of ohmic contacts for semiconductor lasers based on InGaAs/GaAs/GaAlAs layers is reported. Transmission electron microscopy (TEM) and electrical methods were used to study extensively the Pt/Ti/Pt/Au metallization system. The contact fabrication technology was optimized towards achieving the lowest electrical resistance. The technological control and optimization concerned the contact annealing temperature and thickness of metallic layers that form the contact. The average specific contact resistance was below 5×10−6 Ω cm2 (with the record value of 8×10−7 Ω cm2) for the 10 nm Pt/20 nm Ti/30 nm Pt/150 nm Au system. The presented system was used in fabrication of continuous wave (CW) operated laser diodes. The chips mounted on passively cooled copper block achieved optical powers over 1 W, threshold current density values of 140-160 A/cm2 and differential efficiencies above 1 W/A. The value of the characteristic temperature T0 for discussed lasers varied in the range of 180-200 K.  相似文献   

8.
Indium zinc oxide (IZO) films were deposited as a function of the deposition temperature using a sintered indium zinc oxide target (In2O3:ZnO = 90:10 wt.%) by direct current (DC) magnetron reactive sputtering method. The influence of the substrate temperature on the microstructure, surface roughness and electrical properties was studied. With increasing the temperature up to 200 °C, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about 3.4 × 10− 4 Ω cm. Change of structural properties according to the deposition temperature was also observed with X-ray diffraction patterns, transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. IZO films deposited above 300 °C showed polycrystalline phases evolved on the amorphous IZO layer. Very flat surface roughness could be obtained at lower than 200 °C of the substrate temperature, while surface roughness of the films was increased due to the formation of grains over 300 °C. Consequently, high quality IZO films could be prepared by DC magnetron sputtering with O2/Ar of 0.03 and deposition temperature in range of 150-200 °C; a specific resistivity of 3.4 × 10− 4 Ω cm, and the values of peak to valley roughness and root-mean-square roughness are less than 4 nm and 0.5 nm, respectively.  相似文献   

9.
We report on the dielectric properties and leakage current characteristics of 3 mol% Mn-doped Ba0.6Sr0.4TiO3 (BST) thin films post-annealed up to 600 °C following room temperature deposition. The suitability of 3 mol% Mn-doped BST films as gate insulators for low voltage ZnO thin film transistors (TFTs) is investigated. The dielectric constant of 3 mol% Mn-doped BST films increased from 24 at in-situ deposition up to 260 at an annealing temperature of 600 °C due to increased crystallinity and the formation of perovskite phase. The measured leakage current density of 3 mol% Mn-doped BST films remained on the order of 5 × 10− 9 to 10− 8 A/cm2 without further reduction as the annealing temperature increased, thereby demonstrating significant improvement in the leakage current characteristics of in-situ grown Mn-doped BST films as compared to that (5 × 10− 4 A/cm2 at 5 V) of pure BST films. All room temperature processed ZnO-TFTs using a 3 mol% Mn-doped BST gate insulator exhibited a field effect mobility of 1.0 cm2/Vs and low voltage device performance of less than 7 V.  相似文献   

10.
The effect of low-temperature (200 °C) annealing on the threshold voltage, carrier density, and interface defect density of amorphous indium zinc oxide (a-IZO) thin film transistors (TFTs) is reported. Transmission electron microscopy and x-ray diffraction analysis show that the amorphous structure is retained after 1 h at 200 °C. The TFTs fabricated from as-deposited IZO operate in the depletion mode with on-off ratio of > 106, sub-threshold slope (S) of ~ 1.5 V/decade, field effect mobility (μFE) of 18 ± 1.6 cm2/Vs, and threshold voltage (VTh) of − 3 ± 0.7 V. Low-temperature annealing at 200 °C in air improves the on-current, decreases the sub-threshold slope (1.56 vs. 1.18 V/decade), and increases the field effect mobility (μFE) from 18.2 to 23.3 cm2/Vs but also results in a VTh shift of − 15 ± 1.1 V. The carrier density in the channel of the as-deposited (4.3 × 1016 /cm3) and annealed at 200 °C (8.1 × 1017 /cm3) devices were estimated from test-TFT structures using the transmission line measurement methods to find channel resistivity at zero gate voltage and the TFT structures to estimate carrier mobility.  相似文献   

11.
The possibility of optimization and the thermal stability of AuPt Schottky contacts on n-GaAs epitaxial layer has been investigated. The thermal treatment has been carried out in an RTA apparatus for 100 s. The contacts have been found to remain thermally stable up to 350 °C, the optimal annealing temperature is in the range 330–340 °C. The structure, which was annealed at 438 °C, has ohmic character with a contact resistivity of 3.70×10-5cm2, and a thickness of the modified subcontact layer of 160 nm. The reaction between the metallization and GaAs is negligible in the case of the optimal annealing. Au and Pt react very strongly with GaAs during annealing, when the metallization is converted into an ohmic contact structure. Arsenic, as a volatile element, leaks from the structure.  相似文献   

12.
Xueyan Tian  Yinzhu Li 《Thin solid films》2009,517(20):5855-5857
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3, PZT) thin films fabricated by magnetron sputtering technique on the Pt/Ti/SiO2/Si substrates at room temperature, were annealed by means of CO2 laser with resulting average substrate temperature below 500 °C. The crystal structure, surface morphology and pyroelectric properties of the PZT films before and after annealing were investigated by X-ray diffraction, atomic force microscopy, and pyroelectric measurements. The results show that the annealed PZT thin film with a laser energy density of 490 W/cm2 for 25 s has a typical perovskite phase, uniform crystalline particles with a size of about 90 nm, and a high pyroelectric coefficient with 1.15 × 10− 8 Ccm− 2 K− 1.  相似文献   

13.
Bi2VO5.5 ferroelectric thin films were fabricated on LaNiO3/Si(100) substrate via chemical solution deposition. Ferroelectric and dielectric properties of the thin films annealed at 500-700 °C were studied. The thin film annealed at 700 °C exhibited more favorable ferroelectric and dielectric properties than those annealed at lower temperatures. The values of remnant polarization 2Pr and coercive field Ec for the film annealed at 700 °C are 10.62 µC/cm2 and 106.3 kV/cm, respectively. The leakage current of the film is about 1.92 × 10− 8 A/cm2 at 6 V. The possible mechanism of the dependence of electrical properties of the films on the annealing temperature was discussed.  相似文献   

14.
Lead-free polycrystalline BiFeO3 (BFO) thin films were developed using a chemical solution deposition method to deposit the films and the multi-mode 2.45 GHz microwave furnace to optimize the annealing condition of the films. Phase-pure BFO films were obtained at 500 °C-600 °C for 1-5 min with a heating rate of 10 °C/min. The film by microwave annealing (MW) at 550 °C for 5 min exhibited a (012)-preferred orientation with a dense morphology of grain size ~ 294 nm. Its dielectric constant of 96.2, low leakage current density of 2.466 × 10− 6 A/cm2, polarization (2Pr) and coercive field (2Ec) of 0.931 μC/cm2 and 57.37 kV/cm, respectively, were improved compared to those by conventional annealing (CA) at the same annealing conditions.  相似文献   

15.
Smooth and compact thin films of amorphous and crystalline antimony sulfide (Sb2S3) were prepared by radio frequency sputtering of an Sb2S3 target. As-deposited films are amorphous. Polycrystalline antimony sulfide films composed of ∼ 500 nm grains are obtained by annealing the as-deposited films at 400 °C in sulfur vapors. Both amorphous and crystalline antimony sulfide have strong absorption coefficients of 1.8 × 105 cm− 1 at 450 nm and 7.5 × 104 cm− 1 at 550 nm, and have direct bandgaps with band energies of 2.24 eV and 1.73 eV, respectively. These results suggest the potential use of both amorphous and crystalline antimony sulfide films in various solid state devices.  相似文献   

16.
Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at −1.5 V. An average barrier height of (0.77 ± 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 ± 0.03) eV after annealing at 550 °C. The reverse current has been measured as (2.10 ± 0.01) × 10−10 A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 °C to (1.56 ± 0.01) × 10−5 A. The depletion layer width measured at −2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 μm after annealing at 200 °C to 0.24 μm after annealing at 500 °C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 × 1015 cm−3 at 200 °C to 6.06 × 1016 cm−3 after annealing at 550 °C. This increase in the volume concentration has been explained as an effect of a conductive channel that shifts closer to the surface after sample annealing. The series resistance has been observed to decrease with increase in annealing temperature. The Pd contacts have shown high stability up to an annealing temperature of 250 °C as revealed by the IV and CV characteristics after which the quality of the contacts deteriorates with increase in annealing temperature.  相似文献   

17.
We have investigated the optical and electrical characteristics of antimony (Sb)-doped tin oxide (SnO2) films with modified structures by thermal annealing as a transparent conductive electrode. The structural properties were analyzed from the relative void % by spectroscopic ellipsometry as well as the scanning electron microscopy images and X-ray diffraction patterns. As the annealing temperature was raised, Sb-doped SnO2 films exhibited a slightly enhanced crystallinity with the increase of the grain size from 17.1 nm at 500 °C to 34.3 nm at 700 °C. Furthermore, the refractive index and extinction coefficient gradually decreased due to the increase in the relative void % within the film during the annealing. The resistivity decreased to 8.2 × 10−3 Ω cm at 500 °C, but it increased rapidly at 700 °C. After thermal annealing, the optical transmittance was significantly increased. For photovoltaic applications, the photonic flux density and the figure of merit over the entire solar spectrum were obtained, indicating the highest values of 5.4 × 1014 cm−2 s−1 nm−1 at 1.85 eV after annealing at 700 °C and 340.1 μA cm−2 Ω−1 at 500 °C, respectively.  相似文献   

18.
Boron nitride (BN) with flake-like morphology has been synthesized by reacting powder H3BO3, Mg and NH4Cl in an autoclave at 600 °C for 10 h. X-ray diffraction (XRD) patterns show the sample has hexagonal phase with lattice parameters a = 2.506 and c = 6.692 Å. Transmission electron microscopy (TEM) and field emission scanning electron (FE-SEM) indicate the as-synthesized product is pure flake with a mean size of about 100 nm in thickness and 600 nm in width length. X-ray photoelectron spectra (XPS) give an average B/N atomic ratio of 0.98:1. Fourier transformation infrared spectroscopy (FTIR) has a strong B-N absorption at 1376 cm− 1 and 814 cm− 1.  相似文献   

19.
Zinc nitride thin films were deposited by magnetron sputtering using ZnN target in plasma containing either N2 or Ar gases. The rf-power was 100 W and the pressure was 5 mTorr. The properties of the films were examined with thermal treatments up to 550 °C in N2 and O2 environments. Films deposited in Ar plasma were opaque and conductive (ρ ∼ 10− 1 to 10− 2 Ω cm, ND ∼ 1018 to 1020 cm− 3) due to excess of Zn in the structure. After annealing at 400 °C, the films became more stoichiometric, Zn3N2, and transparent, but further annealing up to 550 °C deteriorated the electrical properties. Films deposited in N2 plasma were transparent but very resistive even after annealing. Both types of films were converted into p-type ZnO upon oxidation at 400 °C. All thermally treated zinc nitride films exhibited a shoulder in transmittance at around 345 nm which was more profound for the Ar-deposited films and particularly for the oxidized films. Zinc nitride has been found to be a wide band gap material which makes it a potential candidate for transparent optoelectronic devices.  相似文献   

20.
We have prepared Cu(In,Ga)S2 films at growth temperatures from 300 °C to 580 °C with a homogeneous gallium depth distribution (estimated band gap 1.67 eV) onto soda lime glass (SLG) substrates with one of three different kinds of back contact: Mo(1000 nm), ZnO(500 nm), and Mo(30 nm)/ZnO(500 nm), respectively. We have also investigated the depth profiles of Zn and Na (diffused from SLG) in Cu(In,Ga)S2 films by secondary ion mass spectroscopy (SIMS). The efficiency of solar cells on Mo increases with increasing growth temperature. It is higher on Mo/ZnO than on ZnO, and increases from 350 °C to 450 °C, then decreases above 450 °C. It was observed by SIMS that the amount of Zn in Cu(In,Ga)S2 on Mo/ZnO is lower than it is on ZnO up to 450 °C, and a large amount of Zn diffuses into absorbers over 450 °C, which contributes to decreasing efficiency. The amount of Na in the back contact increases with growth temperature. The depth distribution of Na in Cu(In,Ga)S2 films on Mo is almost constant in the order of 1017-1018 cm− 3, on ZnO and Mo/ZnO the Na concentration increases towards the surface and is in the range of 1015-1017 cm− 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号