首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (ID-VD), drain current-gate voltage (ID-VG), threshold voltage (VT), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 × 10− 3 Ω·cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm2/V s and the on/off ratio of ~ 105. Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.  相似文献   

2.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

3.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

4.
This work investigates high-quality bottom electrode and piezoelectric film used in a thin-film bulk acoustic resonator (TFBAR) device. The titanium (Ti) seeding layer and platinum (Pt) bottom electrode were deposited on silicon substrates by DC sputtering using a dual-gun system. Zinc oxide (ZnO) was then deposited onto the Pt bottom electrode by RF magnetron sputtering. Field-emission scanning electron microscopy (SEM), atom force microscopy (AFM) and the four-point probe method showed that the Pt bottom electrode deposited on the Ti seeding layer exhibited favorable characteristics, such as a crystallite size of less than 10 nm, a surface roughness of 0.69 nm and a sheet resistance of 2.27 Ω/□. The ZnO thin film with a highly c-axis-preferred orientation (FWHM = 0.28°) and a roughness of 6.22 nm was investigated by X-ray diffraction (XRD) and AFM analysis, respectively. The bottom electrode with a low resistance and the highly crystalline ZnO thin film will contribute significantly to the favorable characteristics of the FBAR devices.  相似文献   

5.
To obtain a suitable sputtering target for depositing transparent conducting Al-doped ZnO (AZO) films by using direct current (DC) magnetron sputtering, this study investigates the possibility of using atmosphere controlled sintering of Al2O3 mixed ZnO powders to prepare highly conductive ceramic AZO targets. Experimental results show that a gas mixture of Ar and CO could produce a sintered target with resistivity in the range of 2.23 × 10− 4 Ω cm. The fairly low resistivity was mainly achieved by the formation of both aluminum substitution (AlZn) and oxygen vacancy (VO), thus greatly increasing the carrier concentration. Compared to usual air sintered target, the thin film deposited by the Ar + CO sintered target exhibited lower film resistivity and more uniform spatial distribution of resistivity. A film resistivity as low as 6.8 × 10− 4 Ω cm was obtained under the sputtering conditions of this study.  相似文献   

6.
Transparent conductive films of Al-doped ZnO (AZO) were deposited onto inexpensive soda-lime glass substrates by radio frequency (rf) magnetron sputtering using a ZnO target with an Al content of 3 wt%. The Taguchi method with a L9 orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to examine the performance characteristics of the coating operations. This study investigated the effect of the deposition parameters (rf power, sputtering pressure, thickness of AZO films, and substrate temperature) on the electrical, structural, morphological and optical properties of AZO films. The grey-based Taguchi method showed the electrical resistivity of AZO films to be about 9.15 × 10−3 Ω cm, and the visible range transmittance to be about 89.31%. Additionally, the films were annealed in a vacuum ambient (5.0 × 10−6 Torr) at temperatures of 400, 450, 500 and 600 °C, for a period of 30 min. It is apparent that the intensity of the X-ray peaks increases with annealing treatment, leading to improved crystallinity of the films. By applying annealing at 500 °C in a vacuum ambient for 30 min, the AZO films show the lowest electrical resistivity of 2.31 × 10−3 Ω cm, with about 90% optical transmittance in the visible region and a surface roughness of Ra = 12.25 nm.  相似文献   

7.
Transparent, conducting, Al-doped ZnO films have been deposited, by dc and pulsed dc magnetron sputtering, on glass and electroactive polymer (poly(vinylidene fluoride)–PVDF) substrates. Samples have been prepared at room temperature varying the argon sputtering pressure, after optimizing other processing conditions. All ZnO:Al films are polycrystalline and preferentially oriented along the [002] axis. Electrical resistivity around 3.3 × 10− 3 Ω cm and optical transmittance of ~ 85% at 550 nm have been obtained for AZOY films deposited on glass, while a resistivity of 1.7 × 10− 2 Ω cm and transmittance of ~ 70% at 550 nm have been attained in similar coatings on PVDF. One of the main parameters affecting film resistivity seems to be the roughness of the substrate.  相似文献   

8.
S.J. Lim 《Thin solid films》2008,516(7):1523-1528
Recently, the application of ZnO thin films as an active channel layer of transparent thin film transistor (TFT) has become of great interest. In this study, we deposited ZnO thin films by atomic layer deposition (ALD) from diethyl Zn (DEZ) as a metal precursor and water as a reactant at growth temperatures between 100 and 250 °C. At typical growth conditions, pure ZnO thin films were obtained without any detectable carbon contamination. For comparison of key film properties including microstructure and chemical and electrical properties, ZnO films were also prepared by rf sputtering at room temperature. The microstructure analyses by X-ray diffraction have shown that both of the ALD and sputtered ZnO thin films have (002) preferred orientation. At low growth temperature Ts ≤ 125 °C, ALD ZnO films have high resistivity (> 10 Ω cm) with small mobility (< 3 cm2/V s), while the ones prepared at higher temperature have lower resistivity (< 0.02 Ω cm) with higher mobility (> 15 cm2/V s). Meanwhile, sputtered ZnO films have much higher resistivity than ALD ZnO at most of the growth conditions studied. Based upon the experimental results, the electrical properties of ZnO thin films depending on the growth conditions for application as an active channel layer of TFT were discussed focusing on the comparisons between ALD and sputtering.  相似文献   

9.
The effects of sputtering pressure and power on structural and optical-electrical properties of Al-doped ZnO films were systemically investigated at substrate temperature of room temperature and H2/(Ar + H2) flow ratio of 5%. The results show that carrier concentration and mobility of the films show nonmonotone change due to the evolution of microstructure and lattice defect of the films caused by introduction of H2 with increasing sputtering pressure and power. The transmittance of the films is also found to be related to the introduction of H2 in addition to usually considered surface roughness and crystallinity. Finally, optimized sputtering pressure and power are 0.8 Pa and 100 W, respectively, and obtained minimum resistivity and highest transmittance are 1.43 × 10− 3 Ω·cm and 90.5%, respectively. In addition, it is found that Eg of the films is mainly controlled by the carrier concentration, but crystallite size and stress should also be considered for the films deposited at different powers.  相似文献   

10.
C.H. Tseng  H.C. Chang  C.Y. Hsu 《Vacuum》2010,85(2):263-267
Transparent and conductive Al-doped (2 wt.%) zinc oxide (AZO) films were deposited on inexpensive soda-lime glass substrates by using rf magnetron sputtering at room temperature. This study analyzed the effects of argon sputtering pressure, which varied in the range from 0.46 to 2.0 Pa, on the morphological, electrical and optical properties of AZO films. The only (0 0 2) diffraction peak of the film were observed at 2θ~34.45°, exhibiting that the AZO films had hexagonal ZnO wurtzite structure, and a preferred orientation with the c-axis perpendicular to the substrate. By applying a very thin aluminum buffer layer with the thickness of 2 nm, findings show that the electrical resistivity was 9.46 × 10−4 Ω-cm, and the average optical transmittance in the visible part of the spectra was approximately 81%. Furthermore, as for 10 nm thick buffer layer, the electrical resistivity was lower, but the transmittance was decreased.  相似文献   

11.
Al-doped ZnO thin films were deposited by radio frequency magnetron sputtering using a ZnO target with 2 wt.% Al2O3. The structures and properties of the films were characterized by the thin film X-ray diffraction, high resolution transmission electron microscopy, Hall system and ultraviolet/visible/near-infrared spectrophotometer. The Al-doped ZnO film with high crystalline quality and good properties was obtained at the sputtering power of 100 W, working pressure of 0.3 Pa and substrate temperature of 250 °C. The results of further structure analysis show that the interplanar spacings d are enlarged in other directions besides the direction perpendicular to the substrate. Apart from the film stress, the doping concentration and the doping site of Al play an important role in the variation of lattice parameters. When the doping concentration of Al is more than 1.5 wt.%, part of Al atoms are incorporated in the interstitial site, which leads to the increase of lattice parameters. This viewpoint is also proved by the first principle calculations.  相似文献   

12.
This paper investigates the nematic liquid crystal (NLC) alignment on ion beam-exposed zinc oxide (ZnO) films. The ZnO films are deposited by a radio frequency magnetron sputtering. During the deposition of ZnO film, we supplied sufficient oxygen gas for high resistivity and transmittance. The deposited films show a high transmittance of over 90% and high resistivity of over 1010 Ω cm. The ZnO films show a high deposition rate of 26.7 Å/min. Images obtained via scanning electron microscopy of the ZnO film surfaces, before and after the ion beam exposure, show that groove patterns are formed being to be parallel to the ion beam exposure direction. LC cells are fabricated with the ion beam-exposed ZnO films. The NLC molecules align parallel to the ion beam exposure direction. The electro-optic and response characteristics of fabricated cells show the possibility of application to liquid crystal displays.  相似文献   

13.
Aluminum doped ZnO (ZnO:Al) films were deposited using rf magnetron sputtering in the presence of hydrogen gas in the chamber. A comparative study of the films deposited with and without hydrogen was performed. The XPS studies indicated that the decrease in resistivity of ZnO:Al films with the introduction of hydrogen gas is attributed to the reduced adsorption of oxygen species in the film grain boundaries. The average percentage transmission in the visible region of the films was around 92–95% and band gap was found to be about in the range of 3.15–3.17 eV. The lowest resistivity of 1.8 × 10−4 Ω cm was achieved for the ZnO:Al film deposited with hydrogen.  相似文献   

14.
Highly conducting AZO/Cu/AZO tri-layer films were successfully deposited on glass substrates by RF magnetron sputtering of Al-doped ZnO (AZO) and ion-beam sputtering of Cu at room temperature. The microstructures of the AZO/Cu/AZO multilayer films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM). X-Ray diffraction measurements indicate that the AZO layers in the tri-layer films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. With the increase of Cu thickness, the crystallinity of AZO and Cu layers is simultaneously improved. When the Cu thickness increases from 3 to 13 nm, the resistivity decreases initially and then varies little, and the average transmittance shows a first increase and then decreases. The maximum figure of merit achieved is 1.94 × 10−2 Ω−1 for a Cu thickness of 8 nm with a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84%.  相似文献   

15.
In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode for AC PDP, ZnO:Al films were prepared by DC magnetron sputtering method. The effects of discharge power and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the PDP cells were measured and compared with each other.By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a discharge power of 40 W resulted in the minimum resistivity of 8.5 × 10−4 Ω-cm and a transmittance of 91.7%. However, a high doping concentration of 3 wt% of Al2O3 and excessive sputtering power over 40 W may induce high defect density and limit the growth of small grains. Although the luminance and luminous efficiency of the cell using ZnO:Al are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of AC PDP.  相似文献   

16.
High-quality Al-doped zinc oxide (AZO) thin films have been deposited on quartz substrates by radio-frequency magnetron sputtering at room temperature for thin film solar cell applications as transparent conductive oxide (TCO) electrode layers. Effects of post-deposition annealing treatment in pure nitrogen and nitrogen/hydrogen atmosphere have been investigated. Annealing treatments were carried out from 300 °C to 600 °C for compatibility with typical optoelectronic device fabrication processes. A series of characterization techniques, including X-ray diffraction, scanning electron microscopy, Hall, optical transmission, and X-ray photoelectron spectroscopy has been employed to study these AZO materials. It was found that there were significant changes in crystallinity of the films, resistivity increased from 4.60 × 10− 4 to 4.66 × 10− 3 Ω cm and carrier concentration decreased from 8.68 × 1020 to 2.77 × 1020 cm− 3 when annealing in 400 °C pure nitrogen. Whereas there were no significant changes in electrical and optical properties of the AZO films when annealing in 300-500 °C nitrogen/hydrogen atmosphere, the electrical stability of the AZO films during the hydrogen treatment is attributed to both desorption of adsorbed oxygen from the grain boundaries and production of additional oxygen vacancies that act as donor centers in the films by removal of oxygen from the ZnO matrix. These results demonstrated that the AZO films are stably suited for TCO electrodes in display devices and solar cells.  相似文献   

17.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

18.
Highly conducting tri-layer films consisting of a Cu layer sandwiched between Al-doped ZnO (AZO) layers (AZO/Cu/AZO) were prepared on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of AZO and ion-beam sputtering of Cu. The tri-layer films have superior photoelectric properties compared with the bi-layer films (Cu/AZO, AZO/Cu) and single AZO films. The effect of AZO thickness on the properties of the tri-layer films was discussed. The X-ray diffraction spectra show that all films are polycrystalline consisting of a Cu layer with the cubic structure and two AZO layers with the ZnO hexagonal structure having a preferred orientation of (0 0 2) along the c-axis, and the crystallite size and the surface roughness increase simultaneously with the increase of AZO thickness. When the AZO thickness increases from 20 to 100 nm, the average transmittance increases initially and then decreases. When the fixed Cu thickness is 8 nm and the optimum AZO thickness of 40 nm was found, a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84% in the wavelength range of visible spectrum of tri-layer films have been obtained. The merit figure (FTC) for revaluing transparent electrodes can reach to 1.94 × 10−2 Ω−1.  相似文献   

19.
Keh-moh Lin 《Thin solid films》2007,515(24):8601-8604
In this study, transparent conductive Al-doped ZnO films were deposited by the sol-gel method. The growth mechanism of the film microstructure and its influences on the electrical properties were discussed. It was found that dopant and solution concentration affected the nucleation behavior considerably. The preferred growth orientation of ZnO crystallite was restrained by the film itself. The repeated dip-coating processes did not enable the crystallite size to grow obviously, but it could allow crystallite and atoms to find the suitable positions and therefore led to a better film quality. Consequently, this process led to an electrical resistivity of 7.08 × 10− 3 Ω cm and a high transmittance of over 80% in the visible region. The best sample was obtained for an Al concentration of 1 at.% and at 600 °C for pre- and post-heat treatment.  相似文献   

20.
Al-doped ZnO (AZO) films were deposited on fused silica glass substrates unheated or heated at 200 °C by reactive dc sputtering using a Zn-Al alloy target with mid-frequency pulsing (50 kHz) and the plasma control unit with a feedback system of the optical emission intensity of the atomic O* line at 777 nm to control oxygen gas flow. The stable and reproducible depositions were successfully carried out in the transition region. The deposition rates attained in this study were about 10-20 times higher than the one by conventional sputtering using oxide targets. The AZO films with the lowest resistivity of 3.8 × 10− 4 Ω cm was deposited on the substrate heated at 200 °C with a sputter power of 4 kW, where the deposition rate was 385 nm/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号