首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Nanoporous titanium dioxide (TiO2) based conductometric sensors have been fabricated and their sensitivity to hydrogen (H2) gas has been investigated. A filtered cathodic vacuum arc (FCVA) system was used to deposit ultra-smooth Ti thin films on a transducer having patterned inter-digital gold electrodes (IDTs). Nanoporous TiO2 films were obtained by anodization of the titanium (Ti) thin films using a neutral 0.5% (wt) NH4F in ethylene glycol solution at 5 V for 1 h. After anodization, the films were annealed at 600 °C for 8 h to convert the remaining Ti into TiO2. The scanning electron microscopy (SEM) images revealed that the average diameters of the nanopores are in the range of 20 to 25 nm. The sensor was exposed to different concentrations of H2 in synthetic air at operating temperatures between 100 °C and 300 °C. The sensor responded with a highest sensitivity of 1.24 to 1% of H2 gas at 225 °C.  相似文献   

2.
Ti thin films were anodized in aqueous HF (0.5 wt.%) and in polar organic (0.5 wt.% NH4F + ethylene glycol) electrolytes to form TiO2 nanotube arrays. Ti thin films were deposited on microscope glass substrates and then anodized. Anodization was performed at potentials ranging from 5 V to 20 V for the aqueous HF and from 20 V to 60 V for the polar organic electrolytes over the temperatures range from 0 to 20 °C. The TiO2 nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). It has been observed that anodization of the deposited Ti thin films with aqueous HF solution at 0 °C resulted in nanotube-type structures with diameters in the range of 30-80 nm for an applied voltage of 10 V. In addition, the nanotube-type structure is observed for polar organic electrolyte at room temperature at the anodization voltage higher than 40 V. The volatile organic compound (VOC) sensing properties of TiO2 nanotubes fabricated using different electrolytes were investigated at 200 °C. The maximum sensor response is obtained for carbon tetrachloride. The sensor response is dependent on porosity of TiO2. The highest sensor response is observed for TiO2 nanotubes which are synthesized using aqueous HF electrolyte and have very high porosity.  相似文献   

3.
采用较高粘度的有机溶液作为阳极氧化电解质溶剂制备了TiO2纳米管阵列. 通过探讨阳极氧化工艺参数对纳米管形貌的影响, 研究出高长径比TiO2纳米管阵列的制备工艺, 同时对TiO2纳米管作为染料敏化太阳能电池光阳极的光电性能进行了测试, 并讨论了TiO2纳米管的形貌对电池性能的影响. 结果表明:提高氧化电压和延长时间有利于获得高长径比纳米管, 在含0.5wt%NH4F乙二醇电解质中50V氧化17h可制备出长径比为313.6的TiO2纳米管阵列. TiO2纳米管(在含0.5wt%NH4F乙二醇电解质中40V氧化13h)作为染料敏化太阳能电池光阳极可得到开路电压为0.723V、短路电流为2.15mA/cm2的光电性能.  相似文献   

4.
Highly ordered TiO2 nanotube arrays were fabricated by electrochemical anodization of titanium in an NH4F/H3PO4 electrolyte. A TiO2 crystal phase was identified by X-ray diffraction, and the morphology, length and pore diameter of the TiO2 nanotube arrays were determined by field-emission scanning electron microscopy (FE-SEM). The anodization parameters including the rate of magnetic stirring, F concentration, calcination temperature, anodization voltage and anodization time were investigated in detail. The results show that the as-prepared TiO2 nanotube arrays possessed good uniformity, a well-aligned morphology with a length of 750 nm and an average pore diameter of 62 nm at a 150 rpm rate of magnetic stirring for 120 min at 20 V in an electrolyte mixture of 0.2 M H3PO4 and 0.3 M NH4F with a 500 °C calcination to obtain 100% anatase phase. The adsorption of N-719 dye at different tube lengths was determined by UV-vis analysis and found to increase with increasing tube length. We also discuss the formation mechanism of the TiO2 nanotube arrays. The findings indicate that the formation of the TiO2 nanotube arrays proceeds by the combined action of the electrochemical etching and chemical dissolution.  相似文献   

5.
Ning Xiao  Jiawen Liu 《Materials Letters》2010,64(16):1776-7937
Ordered bi-phase TiO2 nanowire arrays were simply obtained by heat treating TiO2 nanotube arrays prepared by a two-step anodization method. The nanowire arrays are composed of anatase and rutile phases with uniform diameters around 50 nm. The photocatalysis activities of TiO2 nanowire arrays were characterized by quantifying the degradation of methyl orange solution. And the results indicated that the bi-phase nanowire arrays, especially obtained at 700 °C, showed much higher activity than that of P25 film or anatase TiO2 nanotube array.  相似文献   

6.
Titania (TiO2) nanotubes were prepared by anodizing titanium (Ti) foils in an electrochemical bath consisting of 1 M glycerol with 0.5 wt.% NH4F.The pH of the bath was kept constant at 6 and the anodization voltage was varied from 5 V, 20 V to 30 V. It is found that the morphology of the anodized titanium is a function of anodization voltage with pits-like oxide formed for the sample made at 5 V and samples made at 20 V and 30 V consisted of well-aligned nanotubes growing perpendicularly on the titanium foil. However, the nanotubes formed on the samples made at 30 V were not uniform in terms of the nanotubes' diameter and wall thickness. Regardless of the anodization voltage, as anodised samples were amorphous. The crystal structure evolution was studied as a function of annealing temperatures and was characterised by X-ray diffraction and Raman spectroscopy analyses. Crystallization of the nanotubes to anatase phase occurred at 400 °C while rutile formation occurred at 700 °C. Disintegration of the nanotube arrays was observed at 600 °C and the structure completely vanished at 700 °C. TiO2 nanotube annealed at 400 °C and containing 100% anatase revealed the highest photocatalytic activity for the degradation of methyl orange. Consequently, these results indicate that diameter, wall thickness, crystal structure and degree of crystallinity of the TiO2 nanotube arrays are the important factors influencing the efficiency of the photocatalytic activity.  相似文献   

7.
Self-organized mixed oxide nanotube arrays were fabricated by anodization of Ti-6Al-4V alloy in H3PO4/NH4F aqueous solution. The nanotubes of 90-180 nm in diameter and 10-20 nm in wall thicknesses could be tuned by changing anodization voltages. Whereas, the as-prepared nanotube arrays were amorphous; to induce crystallinity, the products were annealed at 400 °C, 500 °C and 600 °C, respectively. The UV-Vis spectra of samples annealed at 600 °C gives the maximum absorption in the visible spectra range. Various characterization techniques (viz., FESEM, XPS, XRD, and UV-Vis) were used to study the morphology, composition, phase and band gap of the films.  相似文献   

8.
K.Y. Chun  Y.M. Sung  Y.T. Hyun 《Thin solid films》2009,517(14):4196-4198
Self-aligned TiO2 nanotube arrays (20 μm in length) were fabricated by anodic oxidation of Ti-grid with a thickness of 100 μm in an ethylene glycol electrolyte with an addition of H2O (1.5 vol.%) and NH4F (0.2 wt.%). Voltage applied between Ti and Pt cathodes is 60 V at ~ 22 °C. Dye-sensitized solar cell utilizing photoanode structure of TiO2-nanotube/Ti-grid was fabricated with no transparent conducting oxide (TCO) layer, in which Ti-grid replaces TCO. Overall photoconversion efficiency is very low (< 0.5%) due to the large pore size (100 nm in diameter) of the nanotubes, which may cause insufficient dye molecules to be attached, thus limiting light harvesting.  相似文献   

9.
We report the fabrication of self-organized partial crystalline TiO2 nanotube arrays in 1, 2-propanediol containing fluoride ion. The influence of anodization parameters including NH4F concentration, water content, anodization voltage and time on the morphology, diameter and length of TiO2 nanotube were investigated in detail. The prepared TiO2 nanotube has diameter in 30–120 nm and length in 0.6–3 μm. TiO2 nanotube arrays are used as photoanode for the application in dye-sensitized solar cell and the photovoltaic performance of 1.91% is achieved with a TiO2 nanotube sample of 2.2 μm in length combining with N719 dye, and the corresponding photovoltaic parameters of 3.6 mA cm?2 in short circuit photocurrent density, 840 mV in open circuit potential, and 63.2% in fill factor.  相似文献   

10.
Sodium‐ion batteries (SIBs) offer a promise of a scalable, low‐cost, and environmentally benign means of renewable energy storage. However, the low capacity and poor rate capability of anode materials present an unavoidable challenge. In this work, it is demonstrated that surface phosphorylated TiO2 nanotube arrays grown on Ti substrate can be efficient anode materials for SIBs. Fabrication of the phosphorylated nanoarray film is based on the electrochemical anodization of Ti metal in NH4F solution and subsequent phosphorylation using sodium hypophosphite. The phosphorylated TiO2 nanotube arrays afford a reversible capacity of 334 mA h g?1 at 67 mA g?1, a superior rate capability of 147 mA h g?1 at 3350 mA g?1, and a stable cycle performance up to 1000 cycles. In situ X‐ray diffraction and transmission electron microscopy reveal the near‐zero strain response and robust mechanical behavior of the TiO2 host upon (de)sodiation, suggesting its excellent structural stability in the Na+ storage application.  相似文献   

11.
M.C. Kao  H.Z. Chen 《Thin solid films》2009,517(17):5096-2818
Nanocrystalline anatase TiO2 thin films with different thicknesses (0.5-2.0 μm) have been deposited on ITO-coated glass substrates by a sol-gel method and rapid thermal annealing for application as the work electrode for dye-sensitized solar cells (DSSC). From the results, the increases in thickness of TiO2 films can increase adsorption of the N3 dye through TiO2 layers to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc of DSSC with a TiO2 film thickness of 2.0 μm (8.5 mA/cm2 and 0.61 V) are smaller than those of DSSC with a TiO2 film thickness of 1.5 μm (9.2 mA/cm2 and 0.62 V). It could be due to the fact that the increased thickness of TiO2 thin films also resulted in a decrease in the transmittance of TiO2 thin films thus reducing the incident light intensity on the N3 dye. An optimum power conversion efficiency (η) of 2.9% was obtained in a DSSC with the TiO2 film thickness of 1.5 μm.  相似文献   

12.
Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co–28Cr–6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co–28Cr–6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co–28Cr–6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities.  相似文献   

13.
Nano-scale TiO2 thin films were synthesized by using sol-gel and spin-coating techniques on glass substrates for photo-catalytic applications. The Ti(IV) butoxide-based TiO2 thin films were optimized for transforming into the high-purity crystalline anatase phase when calcined at 500 °C. To further enhance the photo-catalysis sensitivity of TiO2 thin films for use in visible light environments, a metal plasma ion implantation process was implemented to modify the band gap electron configuration of Ti. Various transition metal atoms such as Ni, Cu, V, and Fe were ionized and accelerated at 20 keV to impinge on the surface of TiO2 substrates at a dosage of 5 × 1015 ions/cm2. ESCA analysis confirmed the binding energy shift of Ti by 0.8-1.2 eV, which accounted for the increased effective positive charge of Ti, resulting in more effective electron trapping capability and, thus, the electron-hole pair separation. In addition, the absorption spectroscopy demonstrated that optical absorption in the visible light regime occurred in specimens implanted with transition metal ions, likely due to the formation of extra impurity energy levels within the original TiO2 band gap energy structure. Among all tested implant materials, the band gap energy of TiO2 was effectively reduced by Cu and Fe ion implantation by 0.9-1.0 eV, which was sufficient enough to excite valence electrons over the band gap in visible light environments. The feasibility of the metal-doped TiO2 thin films for effective applications under visible light irradiation was further confirmed by using super-hydrophilicity contact-angle measurement.  相似文献   

14.
Vertically aligned, free-standing crystallized TiO2 nanotube arrays with a length of 32 μm have been fabricated by a two-step anodization method. The TiO2 nanotube membrane can be detached from the Ti substrate through the secondary anodization process. The influence of the secondary anodization voltage on the morphology, crystalline phase and photovoltaic performance of the as-fabricated samples has been investigated. Results show that the side wall of TiO2 nanotubes becomes obviously thin as the secondary anodization voltage increases and leads to crack when the voltage reaches 25 V. The mass fraction of the anatase reduces by the increase of the voltage. Furthermore, the dye-sensitized solar cells (DSSCs) based on TiO2 nanotube arrays have been assembled. The energy conversion efficiency decreases with the increase of secondary anodization voltage, and a highest energy conversion efficiency of 10.6 % under UV illumination (368.1 nm) is obtained from the cell with TiO2 nanotube membrane re-anodizad at 15 V.  相似文献   

15.
Guang-Rui Gu  Ying-Ai Li 《Vacuum》2010,85(4):531-360
Nano-sheet carbon films (NSCFs) coated with a 2-nm Ti layer were fabricated on n-type Si (110) by means of a quartz-tube-type microwave-plasma chemical-vapour-deposition (MWPCVD) method with hydrogen-methane gas mixture and an electron beam (EB) evaporation method. The field emission (FE) properties of the NSCF were changed by depositing a thin Ti film on its surface. The threshold field was decreased from 3.7 V/μm to 2.5 V/μm and the FE current density at a macroscopic electric field (E) of 10 V/μm was decreased from 41.7 mA/cm2 to 26.3 mA/cm2 for Ti-coated NSCFs. Moreover, the saturation tendency of the emission current density was not improved for Ti-coated NSCFs. A three-region E model considering statistical size effects of FE tip structures in the low E region and space-charge-limited-current (SCLC) effects in the high E region was proposed and the FE data in the low, middle and high E regions were reasonably interpreted.  相似文献   

16.
A novel structure TiO2/Ti film was prepared on a titanium matrix using anodic oxidation technique and applied to degrade Reactive Brilliant Red (RBR) dye in simulative textile effluents. The film was characterized by Field-Emission Scanning Electron Microscope (FE-SEM), Laser Micro-Raman Spectrometer (LMRS), UV–vis spectrophotometer (UVS) and Photoelectrocatalytic (PEC) experiment. The results show that the surface morphology of the film is coral structure, and the crystal structure of the film is anatase. The absorbency of the coral structure TiO2/Ti film is 87–93% in the UV light region, and 77–87% in the visible light region. PEC experiment indicates that the photocurrent density of the coral structure TiO2/Ti film electrode achieves 160 μA/cm2. The color and Chemical Oxygen Demand (COD) removal efficiencies of RBR achieve 73% and 60% in 1 h, respectively. These are 16% and 58% higher than those of nanotube TiO2/Ti film electrode. These were attributed to that these electrodes with different surface morphologies exhibit distinct surface areas and light absorption rate.  相似文献   

17.
Anatase TiO2 nanocrystals (NCs) were deposited onto patterned carbon nanotube (CNT) bundle arrays to form a TiO2/CNT composite using metal organic chemical vapor deposition (MOCVD) using titanium-tetraisopropoxide (Ti(OC3H7)4) as a source reagent. The N-doped TiO2/CNT composite was then fabricated using nitrogen plasma treatment. The structural and spectroscopic properties of TiO2/CNT composites were characterized by field-emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The combined geometrical structure and low electron affinity effects of N-doped TiO2 led to a low turn-on field of 1.0 V μm−1 at a current density of 10 μA cm−2, a low threshold field of 1.9 V μm−1 at a current density of 1 mA cm−2, a high field enhancement factor of 3.0 × 103, and long-term stability for the N-doped TiO2/CNT composite. The results revealed that the N-doped TiO2/CNT composite can be a potential candidate for field emission devices.  相似文献   

18.
A simple method to achieve self-organized, freestanding TiO2 nanotube array was constructed, free of corrosive etching process which was traditionally employed to separate TiO2 nanotubes from the metallic Ti substrate. The TiO2 nanotube arrays were constructed through potentiostatic anodization of Ti foil in aqueous electrolyte containing NH4F and ethylene glycol. The nanotubes in the array were of 45 μm lengths and 100 nm average pore diameters. The effect of NH4F concentration on the length of the self-organized nanotube arrays was investigated. Electrochemical and spectroscopic measurements showed that the as-prepared nanotubes possessed large surface areas, good uniformity, and were ready for enzyme immobilization. The as-prepared nanotube arrays were amorphous, but crystallized with annealing at elevated temperatures, as demonstrated by X-ray diffraction (XRD).  相似文献   

19.
High-aspect-ratio TiO2 nanotubes with small diameter are favored in dye-sensitized solar cells for large dye loading provided by high surface areas. However, long TiO2 nanotubes with small diameter are difficult to grow under usual anodizing conditions due to unavoidable chemical dissolution of the top portion of the as-fashioned tubes. In the present work, two kinds of double-layered TiO2 nanotube arrays were prepared by changing voltage from high to low (i.e., from 30 V to 15 V) or from low to high (i.e., from 15 V to 30 V). It is found that the top layer can serve as a sacrificial layer to protect the continuous growth of the bottom layer from chemical dissolution. Accordingly, the two-step anodization from high voltage to low voltage is proposed to produce high-aspect-ratio TiO2 nanotubes with small diameter underneath a sacrificial top layer.  相似文献   

20.
Arrays of TiO2 nanotubes were fabricated by the anodization of Ti foils and then used in assembling dye-sensitized solar cells (DSSCs). The role of the morphologies of the TiO2 nanotubes in the photovoltaic performances of the DSSCs was studied in terms of the surface topography and the tube length. The necessity of removing the nanoporous films from the surface of the nanotube arrays for good DSSC performance has been demonstrated. Also, it has been shown that appropriately increasing the tube length was an effective measure for enhancing both the short-circuit current density and the conversion efficiency of the DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号