首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If tantalum filaments are used for the hot wire chemical vapour deposition (HWCVD) of thin film silicon, various types of tantalum silicides are formed, depending on the filament temperature.Under deposition conditions employed for device quality amorphous and microcrystalline silicon (Twire ≈ 1750 °C) a Ta5Si3 (as determined by XRD) shell is formed around the Ta core. After 8 h of accumulated deposition time this shell has a thickness of around 20 μm. Upon annealing of the filament in vacuum at 2100-2200 °C the tantalum silicide shell becomes thinner, while a Ta layer is reappearing at the surface of the wire. After 4 h of annealing the silicide is completely removed, whereas the total diameter of the wire has not significantly changed. The resistance of the filament has been monitored and after the annealing procedure, it completely recovered to that of a fresh wire. This regeneration procedure greatly helps to avoid frequent replacement of the filaments.  相似文献   

2.
Diamond deposition on WC-Co cemented carbide was examined by chemical vapour deposition using a tantalum filament. The filament was much superior to conventional tungsten filament for high-temperature use. Diamond film was deposited at a filament temperature up to about 2600 °C for tantalum filament, which was much higher than the maximum filament temperature available for tungsten (2000 °C). The critical methane concentration in H2-CH4 gas for diamond deposition became higher with increasing filament temperature. A deposition rate about 20 times higher was obtained when using a tantalum filament compared with a tungsten filament. The origin of the improved deposition rate of diamond on WC-Co substrate using a tantalum filament is discussed.  相似文献   

3.
Different issues related to controlling size of nanocrystalline silicon (nc-Si) embedded in hydrogenated amorphous silicon oxide (a-SiOx:H) deposited by catalytic chemical vapor deposition (Cat-CVD) have been reported. Films were deposited using tantalum (Ta) and tungsten (W) filaments and it is observed that films deposited using tantalum filament resulted in good control on the properties. The parameters which can affect the size of nc-Si domains have been studied which include hydrogen flow rate, catalyst and substrate temperatures. The deposited samples are characterized by X-ray diffraction, HRTEM and micro-Raman spectroscopy, for determining the size of the deposited nc-Si. The crystallite formation starts for Ta-catalyst around the temperature of 1700 °C.  相似文献   

4.
The filament in a hot-wire chemical vapour deposition (HWCVD) reactor is an important component. When tantalum (Ta) filaments are used for the deposition of thin silicon films, strong degradation takes place: there is a large amount of silicon not only at the surface but also in the bulk of the tantalum catalyst. Ta-Si phases form on the filament surface and in the bulk, which can lead to a porous structure of the catalyst filament. Filament contamination (silicide formation and thick silicon deposits (TSDs)) is the reason for the changes in filament resistance. It also reduces filament lifetime, which is a serious concern for HWCVD deposition technology. A cleaning procedure for the filament at high-temperatures in a vacuum (about 2000 °C) can neither remove the thick silicon deposits nor fully restore the filament surface properties. In order to decrease the silicon content in the tantalum catalyst and suppress TSD formations on the filament surface, we use radio-frequency alternating current (RF, 13.5 MHz) instead of direct current (DC) to heat the filament. The skin effect of the RF current reduces the formation of TSDs on the surface and silicon diffusion into the filament. We show that it is possible to clean the filament surface of TSDs by means of a high-frequency current. Combined RF + DC filament heating allows us to increase the lifetime of the catalyst (almost twofold) and to improve HWCVD process reproducibility without any deterioration in the quality of the deposited film.  相似文献   

5.
The exposure of Ta filaments to a pure NH3 ambient in a hot wire chemical vapour deposition (HWCVD) reactor affects the resistance of the wires. For filament temperatures below 1950 °C the resistance increases over time, which is probably caused by in-diffusion of N atoms. Using the filaments in a mixed SiH4 and NH3 atmosphere (under SiNx deposition conditions) the filaments are hardly affected. Only at the “cold” parts near the electrical contact SiNx deposition on the Ta filaments is observed. X-ray diffraction patterns and cross-section microscope images reveal that in a CH4, H2 and NH3 ambient the TaC0.275N0.218 phase is formed on the surface of the filament. Annealing of these filaments at 2000 °C causes the TaC0.275N0.218 structure to separate into Ta and Ta2C phases.  相似文献   

6.
The effect of filament temperature and deposition time on the formation of tungsten silicide upon exposure to the SiH4 gas in a hot wire chemical vapor deposition process was studied using the techniques of cross-sectional scanning electron microscopy and Auger electron spectroscopy. At a relatively low temperature of 1500 °C, the decomposition of WSi2 phase and the diffusion of Si towards the silicide/W interface produce a thick W5Si3 layer. The diffusional nature leads to a parabolic rate law for silicide growth. An exponential decrease of silicide thickness with temperature between 1600 and 2000 °C illustrates the dominance of Si evaporation at higher temperatures (T ≥ 1600 °C) over the silicide formation.  相似文献   

7.
We report the synthesis of nano-oxides of molybdenum, tungsten, and zinc. Molybdenum oxide (MoO3) and tungsten oxide (WOx) were produced by hot-wire CVD with molybdenum and tungsten filaments, respectively while zinc oxide (ZnO) was produced by thermal CVD. When high purity molybdenum wire was oxidized at ambient system atmosphere, nanorods and nanostraws of MoO3 with length ranging from ∼ 20-80 nm and diameters ranging from ∼ 5-15 nm were produced. Also, the oxidation of the tungsten filament led to the deposition of tungsten oxide nanorods (10-25 nm diameter and 75-90 nm long) and nanospheres with diameters of ∼ 60 nm. Each oxide was reduced to its metallic form by annealing in a hydrogen environment to produce metallic nanoparticles. Nanorods and nanoribbons of ZnO with diameters ranging from 20-65 nm and lengths up to 2 μm were also produced.  相似文献   

8.
We grow silicon films by hot-wire/catalytic chemical vapor deposition using a new filament material: TaC-coated graphite rods. The filaments are 1.6 mm diameter rigid graphite rods with ~30 μm thick TaC coatings. Whereas heated W or Ta wire filaments are reactive and embrittle in silane (SiH4), the TaC/graphite filament is stable. After > 2 h of exposure to SiH4 gas at a range of filament temperatures, the full length of a TaC/graphite filament retains its shiny golden color with no indication of swelling or degradation. In comparison, a W wire exposed to SiH4 under the same conditions becomes swollen and discolored at the cold ends, indicating silicide formation. Scanning electron microscopy images of the filament material are nearly identical before and after SiH4 exposure at 1500-2000 °C. This temperature-independent chemical stability could enable added control of the gas phase chemistry during deposition that does not compromise the filament lifetime. The larger surface area of the 1.6 mm diameter TaC coated graphite filament (compared to the 0.5 mm W filament) allows for a ~ 2× increase in the deposition rate of Si thin films grown for photovoltaic applications.  相似文献   

9.
To optimize the performance of microcrystalline silicon carbide (µc-SiC:H) window layers in n-i-p type microcrystalline silicon (µc-Si:H) solar cells, the influence of the rhenium filament temperature in the hot wire chemical vapor deposition process on the properties of µc-SiC:H films and corresponding solar cells were studied. The filament temperature TF has a strong effect on the structure and optical properties of µc-SiC:H films. Using these µc-SiC:H films prepared in the range of TF = 1800-2000 °C as window layers in n-side illuminated µc-Si:H solar cells, cell efficiencies of above 8.0% were achieved with 1 µm thick µc-Si:H absorber layer and Ag back reflector.  相似文献   

10.
Crystalline WO3 nanoparticles are employed in the development of flexible electrochromic (EC) devices. The nanoparticles are synthesized at high-density with a hot-wire chemical vapor deposition process where the hot filament provides the source of the tungsten metal. Polyethylene terephthalate coated with indium tin oxide is employed as a transparent flexible substrate. A simple electrophoresis technique is employed to deposit the WO3 nanoparticles on the polymer, resulting in a uniform thin film. The EC performance is optimized for WO3 particles that were baked at ~ 300 °C for 2 h prior to electrode fabrication. The transmittance is modulated between ~ 94% and ~ 28% without degradation for 100 cycles.  相似文献   

11.
We report on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological and structural changes of the filaments were investigated using scanning electron microscopy and X-ray diffraction, respectively. Our results conclusively show that the W-filament is not stable during the carburization process and that both mono- and ditungsten-carbides form within the first 5 min. Cracks and graphitic microspheres form on the carbide layer during the first 15 min at the temperatures ≥1600 °C. The microspheres subsequently coalesce to form a graphite layer, encapsulating a fully carburized filament at the temperature of 2000 °C after 60 min, which inhibits the catalytic activity of the filament to produce atomic hydrogen. The structural changes of the filament also induce variations in its temperature, illustrating the instability of the filament during the deposition of CNTs.  相似文献   

12.
After extensive utilisation of tantalum (Ta) catalyst filaments for hot wire chemical vapor deposition (HWCVD) of thin silicon films a strong degradation takes place. A high concentration of silicon was found not only on the surface but also in the bulk of the tantalum filament. Visual microscopic investigations, Secondary Ion Mass Spectrometry (SIMS), X-ray Diffraction (XRD) and Energy Dispersive X-ray Analysis (EDX) indicate appearance of various silicides and formation of thick silicon layer (> 50 μm) on the filament surface. The high-power backscattered scanning electron microscopy (SEM BSE) and optical microscopic analysis of the filament cross section reveal a complicated, non-uniform structure of filaments after use. By XRD a recrystallisation of tantalum kernel was detected. The EDX analysis indicates that silicides on the filament surface have the highest concentration of Si.  相似文献   

13.
We present the synthesis of tungsten oxide (WO3−x) thin films consisting of layers of varying oxygen content. Configurations of layered thin films comprised of W, W/WO3−x, WO3/W and WO3/W/WO3−x are obtained in a single continuous hot-wire chemical vapor deposition process using only ambient air and hydrogen. The air oxidizes resistively heated tungsten filaments and produces the tungsten oxide species, which deposit on a substrate and are subsequently reduced by the hydrogen. The reduction of tungsten oxides to oxides of lower oxygen content (suboxides) depends on the local water vapor pressure and temperature. In this work, the substrate temperature is either below 250 °C or is kept at 750 °C. A number of films are synthesized using a combined air/hydrogen flow at various total process pressures. Rutherford backscattering spectrometry is employed to measure the number of tungsten and oxygen atoms deposited, revealing the average atomic compositions and the oxygen profiles of the films. High-resolution scanning electron microscopy is performed to measure the physical thicknesses and display the internal morphologies of the films. The chemical structure and crystallinity are investigated with Raman spectroscopy and X-ray diffraction, respectively.  相似文献   

14.
The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900 °C) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, Rfil(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi2 fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: an initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W5Si3 (which is later replaced by WSi2) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their Rfil(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored Rfil(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed.  相似文献   

15.
Atmospheric pressure chemical vapour deposition of VCl4, WCl6 and water at 550 °C lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 °C to − 23 °C. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their optical properties were examined using variable-temperature transmission and reflectance spectroscopy. It was found that incorporation of tungsten into the films led to an improvement in the colour from yellow/brown to green/blue depending on the level of tungsten incorporation. The films were optimized for optical transmission, thermochromic switching temperature, magnitude of the switching behaviour and colour to produce films that are suitable for use as an energy saving environmental glass product.  相似文献   

16.
Monitoring of the electrical resistance of the Ta catalyst during the hot wire chemical vapor deposition (HWCVD) of thin silicon films gives information about filament condition. Using Ta filaments for silane decomposition not only the well known strong changes at the cold ends, but also changes of the central part of the filament were observed. Three different phenomena can be distinguished: silicide (stoichiometric TaXSiY alloys) growth on the filament surfaces, diffusion of Si into the Ta filament and thick silicon deposits (TSD) formation on the filament surface. The formation of different tantalum silicides on the surface as well as the in-diffusion of silicon increase the filament resistance, while the TSDs form additional electrical current channels and that result in a decrease of the filament resistance. Thus, the filament resistance behaviour during ageing is the result of the competition between these two processes.  相似文献   

17.
T. Durakiewicz  J. Sikora 《Vacuum》2006,80(8):894-898
A novel method of dynamic measurement of work function (WF) variations of hot metal filaments is described. It is essential in this method that electron emission current (Ie) is recorded during filament self-cooling when no heating power is supplied, thereby Ie is not disturbed by the potential gradient along the filament. WF shift due to the presence of a low-pressure gas, where the main active compounds are O2 and H2O, is calculated from an equation derived on the basis of the Richardson formula. The relative increase of WF found by this method was 5 times larger for tungsten than that for tantalum over the entire temperature range from 900 to 1800 K. Our method may be used in research studies of adsorption-related phenomena on metallic surfaces at high temperatures.  相似文献   

18.
Tantalum and niobium oxide optical thin films were prepared at room temperature by plasma-enhanced chemical vapor deposition using tantalum and niobium pentaethoxide (M(OC2H5)5) precursors. We studied the evolution of their optical and microstructural properties as a result of annealing over a broad temperature range from room temperature up to 900 °C. The as-deposited films were amorphous; their refractive index, n, and extinction coefficient, k, at 550 nm were n = 2.13 and k < 10− 4 for Ta2O5, and n = 2.24 and k < 10− 4 for Nb2O5. The films contained a small amount of residual carbon (∼ 2-6 at.%) bonded mostly to oxygen. During annealing, the onset of crystallization was observed at approximately TC1 = 650 °C for Ta2O5 and at TC1 = 450 °C for Nb2O5. Upon annealing close to T1 (300 °C for Nb2O5 and 400 °C for Ta2O5), n at 550 nm decreased by less than 1%. This was correlated with the decrease of carbon content, as suggested by Fourier transform infrared spectroscopy, elastic recoil detection and static secondary ion mass spectroscopy (SIMS) results. During annealing, we observed phase transition from the δ- (hexagonal) phase to the L- (orthorhombic) phase between 800 °C and 900 °C for Ta2O5, and between 600 °C and 700 °C for Nb2O5. The structural changes were also marked by silicon diffusion from the substrate into the oxide layer at annealing temperatures above 500 °C for Ta2O5 and above 400 °C for Nb2O5. As a consequence of oxygen, silicon and metal interdiffusion, the interface between the Si substrate and the metal oxide (Ta2O5 or Nb2O5) is characterized by its broadening, well documented by spectroscopic ellipsometry and SIMS data.  相似文献   

19.
Amorphous silicon films have been made by HWCVD at a very low substrate temperature of ≤ 100 °C (in a dynamic substrate heating mode) without artificial substrate cooling, through a substantial increase of the filament-substrate distance (∼ 80 mm) and using one straight tantalum filament. The material is made at a reasonable deposition rate of 0.11 nm/s. Optimized films made this way have device quality, as confirmed by the photosensitivity of > 105. Furthermore, they possess a low structural disorder, manifested by the small Γ/2 value (half width at half maximum) of the transverse optic (TO) Si-Si vibration peak (at 480 cm− 1) in the Raman spectrum of ∼ 30.4 cm− 1, which translates into a bond angle variation of only ∼ 6.4°. The evidence gathered from the studies on the structure of the HWCVD grown film by three different techniques, Raman spectroscopy, spectroscopic ellipsometry and transmission electron microscopy, indicate that we have been able to make a photosensitive material with a structural disorder that is smaller than that expected at such a low deposition temperature.Tested in a p-i-n solar cell on Asahi SnO2:F coated glass (without ZnO at the back reflector), this i-layer gave an efficiency of 3.4%. To our knowledge, this is the first report of a HWCVD thin film silicon solar cell made at such a low temperature.  相似文献   

20.
Tungsten nitride carbide (WNxCy) thin films were deposited by chemical vapor deposition using the dimethylhydrazido (2) tungsten complex (CH3CN)Cl4W(NNMe2) (1) in benzonitrile with H2 as a co-reactant in the temperature range 300 to 700 °C. Films were characterized using X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy and four-point probe to determine film crystallinity, composition, atomic bonding, and electrical resistivity, respectively. The lowest temperature at which growth was observed from 1 was 300 °C. For deposition between 300 and 650 °C, AES measurements indicated the presence of W, C, N, and O in the deposited film. The films deposited below 550 °C were amorphous, while those deposited at and above 550 °C were nano-crystalline (average grain size < 70 Å). The films exhibited their lowest resistivity of 840 µΩ-cm for deposition at 300 °C. WNxCy films were tested for diffusion barrier quality by sputter coating the film with Cu, annealing the Cu/WNxCy/Si stack in vacuum, and performing AES depth profile and XRD measurement to detect evidence of copper diffusion. Films deposited at 350 and 400 °C (50 and 60 nm thickness, respectively) were able to prevent bulk Cu transport after vacuum annealing at 500 °C for 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号