首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cells that lack the CD45 transmembrane tyrosine phosphatase have a variety of T-cell receptor (TCR) signaling defects that are corrected by reexpression of wild-type CD45 or its intracytoplasmic domains. In this study, a chimeric molecule containing the myristylation sequence of Src and the intracellular portion of CD45, previously shown to restore function in CD45- T cells, was mutagenized to determine if membrane-associated CD45 tyrosine phosphatase activity is required to restore TCR-mediated signaling in CD45- T cells. Abolition of enzymatic activity by substitution of a serine for a critical cysteine in the first catalytic domain resulted in failure of this molecule to restore TCR signaling. Another mutation, in which a single amino acid substitution destroyed the myristylation site, resulted in failure of the chimeric molecule to partition to the plasma membrane. Although expressed at high levels and enzymatically active, this form of intracellular CD45 also failed to restore normal signaling in CD45- T cells. These findings strongly suggest that CD45's function in TCR signaling requires its proximity to membrane-associated tyrosine phosphatase substrates.  相似文献   

2.
This study compares the biochemical responses in T cells activated with the CD28 ligands B7-1 and B7-2. The patterns of tyrosine phosphorylation induced in T cells by these two CD28 ligands are identical, but clearly different from the tyrosine phosphorylation induced by the T cell receptor (TCR). The TCR regulates protein complexes mediated by the adapter Grb2 both in vivo and in vitro. In contrast, there is no apparent regulation of in vivo Grb2 complexes in response to B7-1 or B7-2. Rather, B7-1 and B7-2 both induce tyrosine phosphorylation of a different adaptor protein, p62. The regulation of p62 is a unique CD28 response that is not shared with the TCR. These data indicate that B7-1 and B7-2 induce identical tyrosine kinase signal transduction pathways. The data show also that the TCR and CD28 couple to different adapter proteins, which could explain the divergence of TCR and CD28 signal transduction pathways during T cell activation.  相似文献   

3.
Costimulation was originally defined and characterized during primary T cell activation. The signaling events that regulate subsequent antigen encounters by T cells are less well defined. In this study we examined the role of CD30 in T cell activation and defined factors that regulate expression of CD30 on T cells. We demonstrate that CD30 expression is restricted to activated T cells and regulated by CD28 signal transduction. In contrast to CD28-expressing TCR Tg cells, CD28-deficient TCR Tg cells did not express CD30 when cultured with peptide and APCs. However, rIL-4 reconstituted CD30 expression on CD28-deficient TCR Tg cells. Blockade of CD28 interactions or depletion of IL-4 inhibited the induction of CD30, suggesting that both CD28 and IL-4 play important roles in the induction of CD30 expression on wild-type cells. However, CD28 signaling did not up-regulate CD30 expression solely through its ability to augment IL-4 production because IL-4-deficient T cells stimulated with anti-CD3 and anti-CD28 expressed CD30. Induction of CD30 in the absence of IL-4 was not due to the IL-4-related cytokine IL-13. CD30, when expressed on an activated T cell, can act as a signal transducing receptor that enhances the proliferation of T cells responding to CD3 crosslinking. Collectively, the data suggest that T cell expression of CD30 is dependent on the presence of CD28 costimulatory signals or exogenous IL-4 during primary T cell activation. Once expressed on the cell surface, CD30 can serve as a positive regulator of mature T cell function.  相似文献   

4.
The T cell antigen receptor (TCR).CD3 complex contains several distinct but related signal transduction modules termed "Reth motifs": one each in the cytoplasmic domains of CD3-gamma, -delta, and -epsilon chains and three in the CD3-zeta polypeptide (zeta A, zeta B, and zeta C). Cross-linking of individual motifs expressed in chimeric molecules leads to early and late T cell activation events. Although the activated T cell receptor associates with nonreceptor tyrosine kinases, the sites of interaction with kinases and other potential effector molecules have not been fully mapped. Here we show that phosphatidylinositol 3-kinase (PI 3-kinase) preferentially associated with the zeta chain membrane proximal motif zeta A. Maximal PI 3-kinase/zeta A association occurred following TCR.CD3 activation and was dependent upon phosphorylation of both tyrosine residues in zeta A. The association of PI 3-kinase was specific for zeta A and could be ranked zeta A > zeta C > zeta B. Phosphorylation of the zeta A motif on tyrosine residues occurred in response to TCR.CD3 cross-linking in vivo. These results indicate that T cell activation leads to assembly of an intracellular signaling complex: recruitment of a tyrosine kinase, phosphorylation of zeta A, and association of PI 3-kinase. These data also support a model in which different Reth motifs of the TCR.CD3 complex recruit distinct signal transduction molecules. Thus, the subdomains of the T cell antigen receptor zeta chain may serve different roles during T cell maturation and antigen-driven activation.  相似文献   

5.
Expression of a single Ag receptor on lymphocytes is maintained via allelic exclusion that generates cells with a clonal receptor repertoire. We show in normal mice and mice expressing functionally rearranged TCR alphabeta transgenes that allelic exclusion at the TCR alpha locus is not operational in immature thymocytes, whereas most mature T cells express a single TCRV alpha-chain. TCRV alpha allelic exclusion in mature thymocytes is regulated through a CD45 tyrosine phosphatase-mediated signal during positive selection. Using functional and genetic systems for selection of immature double TCRV alpha+ thymocytes, we show that peptide-specific ligand recognition provides the signal for allelic exclusion, i.e., mature T cells maintain expression of the ligand-specific TCRV alpha-chain, but lose the nonfunctional receptor. Whereas activation of TCRV beta-chains or CD3epsilon leads to receptor internalization, TCRV alpha ligation promotes retention of the TCR on the cell surface. Although both TCRV alpha- and TCRV beta-chains trigger phosphotyrosine signaling, only the TCRV beta-chain mediates membrane recruitment of the GTPase dynamin. These data indicate that TCRV alpha-directed signals for positive selection control allelic exclusion in T cells, and that developmental signals can select for single receptor usage.  相似文献   

6.
7.
The Tec protein-tyrosine kinase family includes Btk, Itk/Tsk/Emt, Tec, Rlk/Txk, and Bmx which are involved in signals mediated by various cytokines or antigen receptors. Itk is expressed primarily in T cells and activated by TCR/CD3, CD28, and CD2. However, the defect in T cell signaling in itk-deficient mice is very modest. Thus, we looked for other Tec family kinases that could be expressed in lymphoid cells and involved in T cell signal transduction. Here, we demonstrate that Tec, expressed in T cells, is activated following TCR/CD3 or CD28 ligation and interacts with CD28 receptor in an activation-dependent manner. This interaction involves the Tec SH3 domain and the proline-rich motifs in CD28. We also show that Tec can phosphorylate p62(dok), one CD28-specific substrate, whereas Itk cannot. Overexpression of Tec but not Itk can enhance the interleukin-2 promoter activity mediated by TCR/CD3 or CD28 stimulation and introduction of a kinase-dead Tec but not Itk can suppress interleukin-2 expression, indicating that Tec is directly involved in T cell activation. Altogether, these data demonstrate that Tec kinase is an integral component of T cell signaling and that the two Tec family kinases, Tec and Itk, have distinct roles in T cell activation.  相似文献   

8.
The induction of full activation or death in TCR-triggered T cells depends largely on whether appropriate costimulatory signals are provided. In this study, we show that the costimulation of CD9 on naive T cells during TCR stimulation results in transient, albeit potent, activation followed by apoptosis, rather than full activation. Anti-CD9 mAb synergized with suboptimal doses of anti-CD3 mAb in inducing T cell activation. [3H]TdR incorporation determined 2 days after CD9 costimulation was as potent as that induced by CD28 costimulation. In contrast to progressive T cell proliferation induced by CD28 costimulation, CD9 costimulation led to the induction of apoptosis of once-activated T cells. Although IL-2R expression was induced significantly earlier and to a greater degree after CD9 costimulation than after CD28 costimulation, CD9 costimulation only transiently produced a small amount of IL-2 and induced apparently low levels of bcl-xL compared with those observed in CD28 costimulation. Addition of rIL-2 to cultures of CD9 costimulation induced strikingly enhanced expression of bcl proteins, especially of bcl-xL, and protected TCR-stimulated T cells from apoptosis. These data indicate that CD9-mediated costimulation of TCR-triggered naive T cells leads to activation followed by apoptosis as the result of failure to generate a positive signal for sufficient levels of IL-2 production.  相似文献   

9.
To investigate the mechanisms underlying the deficiency of T lymphocytes from patients with Hodgkin's disease, we investigated the expression of the T-cell receptor (TCR) zeta chain in patients with Hodgkin's disease. By flow cytometry using an anti-zeta chain monoclonal antibody, peripheral blood T lymphocytes from patients with untreated Hodgkin's disease were shown to express decreased levels of the TCR zeta chain. After stimulation by combined CD3 and CD28 cross-linking, T cells from Hodgkin's disease patients upregulated zeta chain protein expression to normal values within 48 hours and achieved a cytolytic potential and levels of interleukin (IL)-2 secretion that were not different from T cells obtained from healthy controls. These results show that downregulation of the TCR zeta chain in Hodgkin's T lymphocytes is a reversible event. Costimulation of CD3 and CD28 is a novel approach for overcoming the T-cell deficiency in Hodgkin's disease and might be exploited clinically. As upregulation of the zeta chain can also be achieved using bispecific monoclonal antibodies (BI-MoAbs) with specificity for tumor antigens and CD3 and CD28, respectively, an immunotherapy with CD3/CD30 and CD28/CD30 Bi-MoAbs may overcome and should therefore, not be jeopardized by the inherent T-cell deficiency in patients with Hodgkin's disease.  相似文献   

10.
Engagement of CD28 induces a major costimulatory pathway required by many CD4+ T cells in addition to activation via the TCR. In the absence of signals provided by CD28, ligation of the TCR alone can induce anergy or apoptosis in CD28+ cells. However, we report here characterization of a distinct subset of CD4+ T cells that are CD28-. Three autoreactive CD4+ human T cell clones that could be activated to produce IL-2 and proliferate by anti-CD3 alone were found to lack expression of CD28. CD28- clones that were activated with anti-CD3 alone were not anergic to restimulation via CD3. The presence of CD28-CD4+ T cells was verified in peripheral blood, and their frequency ranged from 0% to >22% of CD4+ T cells in different individuals. The percentage of CD28-CD4+ T cells in the peripheral blood of 57 individuals was significantly correlated with specific class II MHC alleles. Persons with HLA-DRB1*0401 and DR1 alleles had significantly higher numbers of CD28- T cells, while individuals with HLA-DR2(15) had significantly fewer CD28-CD4+ T cells than the mean. Like the CD28- clones, CD28-CD4+ T cells isolated from peripheral blood proliferated upon CD3 cross-linking in the absence of costimulation. The finding that CD28-CD4+ T cells resist induction of anergy following engagement of the TCR in the absence of conventional costimulation demonstrates one mechanism by which autoreactive T cells can escape processes that censor self-reactivity. The MHC associations observed suggest a relationship with autoimmunity and loss of self-tolerance.  相似文献   

11.
12.
Although there is good evidence that the induction of IL-4 synthesis in CD4+ T lymphocytes is favored by Ag presentation by B cells and not macrophages, the precise molecular signals provided by B cells to T cells that enhance IL-4 synthesis are not clear. To examine this issue, we established an APC-independent system to activate highly purified T cells and induce cytokine synthesis, using immobilized mAbs against several T cell surface molecules, including CD3, CD28, and the CD40 ligand (CD40L). The counter-receptors for all three of these molecules are expressed on B cells, and include CD40, which is expressed primarily on B cells, but also on dendritic cells and thymic epithelium. We found that IL-4 synthesis was greatly enhanced by triggering of CD40L on the T cell surface in conjunction with ligation of CD3/TCR and CD28, whereas ligation of CD3/TCR and CD28 in the absence of CD40L triggering resulted in little or no IL-4 synthesis. CD40L costimulation greatly enhanced IL-4 synthesis both in T cells from normal nonallergic adult subjects as well as in naive T cells from cord blood. Furthermore, we demonstrated that IL-4 synthesis was optimally enhanced when the strength of the CD3/TCR signal was limiting, while IL-4 synthesis was inhibited when CD3/TCR stimulation was maximal. These studies confirm that IL-4 synthesis can be induced in normal T lymphocytes in the absence of exogenous IL-4, and demonstrate that CD40L costimulation is of fundamental importance in regulation of IL-4 production. In addition, these findings provide a mechanism by which B cells preferentially enhance IL-4 synthesis in T cells at low Ag concentrations.  相似文献   

13.
While little is known about their activation requirements and function, the intraepithelial T cells of the murine vagina express TCR complexes in which the antigen recognition components and the signaling components have unusual features. These vaginal T cells express an invariant V gamma 4/V delta 1 TCR and appear to be the only intraepithelial gamma delta T cells that exclusively use FcR gamma chains in their TCR complex. To further characterize the vaginal gamma delta T cells we isolated them from normal mice and from mice injected systemically with an activation-inducing dose of anti-TCR mAb. The isolated gamma delta T cells were examined by flow cytometry for their surface expression of a panel of adhesion, proteins, activation antigens and cellular interaction molecules (CD44, CD62L, CD45RB, LFA-1, CD2 and CD28). The patterns of expression observed indicate that the vaginal gamma delta T cells of normal mice show the phenotype of effector T cells. The adhesion/co-stimulatory molecules CD28 and CD2 were not detected on vaginal gamma delta T cells, an interesting finding since the absence of CD2 from other T cells has been suggested to result in anergy. However, vaginal gamma delta T cells are responsive to TCR-mediated signals since injection of normal mice with pan-anti-TCR antibody or stimulating anti-gamma delta TCR antibody resulted in an increase in cell number and increased expression of transferrin and IL-2 receptors. These results indicate that vaginal gamma delta T cells might utilize other co-stimulatory molecules, if any, in connection with TCR-induced activation and differentiation. While the physiological function of vaginal gamma delta T cells remains unknown, the expression of an invariant V gamma 4/V delta 1 TCR, their exclusive use of gamma chain homodimers in their TCR, and the absence of CD2 and CD28 co-stimulatory molecules are a novel combination of properties that suggests specialized functional properties. Although vaginal gamma delta T cells share some features in common with gamma delta T cells that reside in other epithelial tissues, such as skin and intestine, the present studies provide additional evidence that vaginal gamma delta T cells are a highly specialized and distinct T cell population.  相似文献   

14.
Optimal T cell responsiveness requires signaling through the T cell receptor (TCR) and CD28 costimulatory receptors. Previously, we showed that T cells from autoimmune nonobese diabetic (NOD) mice display proliferative hyporesponsiveness to TCR stimulation, which may be causal to the development of insulin-dependent diabetes mellitus (IDDM). Here, we demonstrate that anti-CD28 mAb stimulation restores complete NOD T cell proliferative responsiveness by augmentation of IL-4 production. Whereas neonatal treatment of NOD mice with anti-CD28 beginning at 2 wk of age inhibits destructive insulitis and protects against IDDM by enhancement of IL-4 production by islet-infiltrating T cells, administration of anti-CD28 beginning at 5-6 wk of age does not prevent IDDM. Simultaneous anti-IL-4 treatment abrogates the preventative effect of anti-CD28 treatment. Thus, neonatal CD28 costimulation during 2-4 wk of age is required to prevent IDDM, and is mediated by the generation of a Th2 cell-enriched nondestructive environment in the pancreatic islets of treated NOD mice. Our data support the hypothesis that a CD28 signal is requisite for activation of IL-4-producing cells and protection from IDDM.  相似文献   

15.
During T cell activation, CD4 and CD8 form a 'bridge' between the T cell receptor (TCR) and major histocompatibility complex (MHC) class II and class I molecules, respectively. Due to this intimate association, CD4 and CD8 are now termed co-receptors and considered an integral part of this multimolecular complex. In addition, interest in CD4 has been heightened by the discovery that it is, in part, the receptor for HIV. Although CD4 and CD8 appear to perform similar immune functions, they are structurally diverse suggesting that their mode of interaction with the TCR and MHC molecules may differ. This review will focus primarily on a series of studies which have attempted to map the residues which mediate CD4:MHC class II interaction. These data will be evaluated in light of our current understanding of CD8:MHC class I, and CD4:TCR interactions. In addition, a model to explain the structural and functional differences between CD4 and CD8 will be presented. Finally, the potential effect of these multiple interactions on T cell function will be discussed.  相似文献   

16.
CD28 is a major coreceptor that regulates cell proliferation, anergy, and viability of T cells. The negative selection by T-cell receptor (TCR)-induced cell death of immature thymocytes as well as of activated human antigen-specific T-cell clone, requires a costimulatory signal that can be provided by CD28. Conversely, CD28-mediated signals increase expression of Bcl-XL, a survival gene, and promote survival of naive T cells cultured in the absence of antigen or costimulation. Because CD28 appears to both protect from, or induce T-cell death, one important question is to define the activation and cellular parameters that dictate the differential role of CD28 in T-cell apoptosis. Here, we compared different CD28 ligands for their ability to regulate TCR-induced cell death of a murine T-cell hybridoma. In these cells, TCR triggering induced expression of Fas and FasL, and cell death was prevented by anti-Fas blocking monoclonal antibody (MoAb). When provided as a costimulus, both CD28 MoAb and the B7.1 and B7.2 counter receptors downregulated, yet did not completely abolish T-cell receptor-induced apoptosis. This CD28 cosignal resulted in both upregulation of Bcl-XL and prevention of FasL expression. In marked contrast, when given as a single signal, CD28 MoAb or B7.1 and B7.2 induced FasL expression and resulted in T-cell death by apoptosis, which was dependent on the level of CD28 ligation. Furthermore, triggering of CD28 upregulated FasL and induced a marked T-cell death of previously activated normal peripheral T cells. Our results identify Fas and FasL as crucial targets of CD28 in T-cell death regulation and show that within the same cell population, depending on its engagement as a single signal or as a costimulus together with the TCR, CD28 can either induce a dose-dependent death signal or protect from cell death, respectively. These data provide important insights into the role of CD28 in T-cell homeostasis and its possible implication in neoplastic disorders.  相似文献   

17.
T cell repertoire selection processes involve intracellular signaling events generated through the TCR. The CD4 and CD8 coreceptor molecules can act as positive regulators of TCR signal transduction during these developmental processes. In this report, we have used TCR transgenic mice to determine whether TCR signaling can be modulated by the CD8 coreceptor molecule. These mice express on the majority of their T cells a TCR specific for the male (H-Y) Ag presented by the H-2Db MHC class I molecule. We show that CD4-CD8-, but not CD4-CD8+, thymocytes expressing the H-Y TCR responded with high intracellular calcium fluxes to TCR/CD3 stimulation without extensive receptor cross-linking. To examine the effects of CD8 expression on intracellular signaling responses in the CD4-CD8- cells, the H-Y TCR transgenic mice were mated with transgenic mice that constitutively expressed the CD8 alpha molecule on all T cells. The expression of the CD8 alpha alpha homodimer in the CD4-CD8-thymocytes led to impaired intracellular calcium responses and less efficient protein tyrosine phosphorylation of substrates after TCR engagement. In male H-2b H-Y transgenic mice, the majority of thymocytes have been deleted with the surviving cells expressing a high density of the transgenic TCR and exhibiting either a CD4-CD8- or CD4-CD8lo phenotype. It has been postulated that these cells escaped deletion by down-regulating the CD8 molecule. In the H-Y TCR/CD8 alpha double transgenic male mice, the CD4-CD8lo cells were completely eliminated as a result of CD8 alpha expression. However, the CD4-CD8- T cells were not deleted despite normal levels of the CD8 alpha transgene expression. These results suggest that the CD4-CD8- thymocytes may not be susceptible to the same deletional mechanisms as other thymocytes expressing TCR-alpha beta.  相似文献   

18.
Antigen-specific activation of the T cell is accomplished by engagement of the T cell receptor (TCR) by an antigen (Ag)/MHC complex presented on the surface of an antigen- presenting cell (APC). However, it has been demonstrated that engagement of the TCR by Ag/HC complexes alone is normally insufficient to lead to a proliferative response and the development of effector function. Thus it has been proposed that the APC also provides additional signals which serve to modulate the T cell's response. These second or costimulatory signals are thought to be critical in the generation of a T cell-driven immune response. Several receptors have been proposed to be capable of serving as costimulatory receptors. Candidate molecules include CD28 and LFA-1 as well as other receptors. In this review the studies that we have performed to clarify the role of both LFA-1 and CD28 in providing costimulatory activity for T cell activation are discussed. In addition, we present evidence that under certain conditions, TCR signalling alone can be sufficient to lead to T cell proliferation.  相似文献   

19.
20.
The efficiency and magnitude of T cell responses are influenced by ligation of the co-stimulatory receptor CD28 by B7 molecules expressed on antigen-presenting cells (APC). In contrast to most previous studies in which agonistic anti-TCR/CD3 and anti-CD28 antibodies were employed, here we have investigated the contribution of CD28 to T cell activation under physiological conditions of antigen presentation. Jurkat T cells and primary T cells from TCR-transgenic mice stimulated with superantigen and antigen, respectively, presented by B7-expressing APC were utilized. In both systems we show that inhibiting CD28/B7 interaction resulted in impaired TCR-induced tyrosine phosphorylation of the signal-transducing zeta chain and ZAP-70. Consistent with a blockade of TCR-proximal signaling events, Jurkat cells stimulated in the absence of CD28 ligation were found to have strongly diminished tyrosine phosphorylation of cellular substrates and downstream signaling pathways such as Ca2+/calcineurin, ERK/MAPK and JNK. Our results provide evidence for a role of CD28 in enhancing TCR signaling capacity during the earliest stages of T cell:APC interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号