首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Omrane A  Juhlin G  Ossler F  Aldén M 《Applied optics》2004,43(17):3523-3529
A novel technique for measuring droplet temperatures has been demonstrated. Laser-induced phosphorescence from thermographic phosphors, seeded to distilled water and iso-octane, was used to measure temperatures of single falling droplets. The phosphors were excited by the fourth and third harmonics of a Nd:YAG laser. The subsequent emission was evaluated by spectral and temporal investigations of the thermographic phosphors Mg4FGeO6:Mn and La2O2S:Eu, respectively. The spectral and the temporal methods permitted temperature measurements of free-falling droplets up to 433 K. Results from both methods, which show an estimated accuracy of better than 1%, are presented.  相似文献   

2.
Abstract

The harmonic spectrum emitted by a two-level atom driven by a resonant laser field is calculated. The spectrum is seen to depend on the shape of the pulse. In the case of an asymmetric pulse profile, harmonic emission is present also at a relatively low intensity field.  相似文献   

3.
Borghese A  Merola SS 《Applied optics》1998,37(18):3977-3983
The optical breakdown induced in air at atmospheric pressure by Nd:YAG Q-switched laser pulses is studied in terms of the spectral features of the emitted radiation in the wavelength range 180-850 nm during the first 200 ns after the laser pulse onset. During the plasma build up, radiation emission features intense, broadband, and structureless ultraviolet-visible spectra before the appearence of atomic lines on the microsecond scale. Also, the emitting plasma kernel, imaged during the buildup and decay stages in the early tens of nanoseconds, turns out to have a size of ~0.3 mm and a volume of ~0.02 mm(3). The coupling of direct emission data and broadband absorption measurements allowed us to retrieve peak values of electron temperature above 100,000 K and of an optical depth of the order of unity, under the assumptions of local thermodynamic equilibrium and a homogeneous kernel. The simultaneous occurrence of such temporal, spatial, and spectral features of the plasma kernel suggests its exploitation as a pulsed, bright, and broadband ultraviolet-visible light source.  相似文献   

4.
Methodology enabling mass spectral analysis of the composition of droplet(s) prepared in an electrodynamic balance (EDB) by matrix-assisted laser desorption/ionization (MALDI) is described. The dc field surrounding the electrodynamic balance was manipulated to eject single droplets at a time from the EDB thereby causing their deposition onto a MALDI sample plate precoated with matrix. When the laser was directed onto the droplet(s) and held stationary, marked gains in the signal-to-noise and signal-to-background ratios were realized with each subsequent mass spectrum due to the suppression of matrix cluster ion formation. Optical microscopy of the plate, after 1024 laser shots were fired at eight droplets that had been deposited one on top of the other, revealed a residual island of droplet matter (area approximately 3.1 x 10(-9) m2) inside the region where the crystalline matrix had been ablated away within the laser spot (area approximately 1.6 x 10(-8) m2). Removing the predried crystalline matrix layer and, instead, adding matrix into the starting solution was found to be a more effective means of suppressing matrix cluster ion formation. The chemical composition of the droplet(s) prepared in the EDB is discussed with regard to sample preconcentration, the images of the laser spot after MALDI, matrix cluster ion suppression, and the possibility for improved quantitation and detection limits by MALDI-TOF-MS.  相似文献   

5.
We present an experimental technique that allows the simultaneous spatial imaging and spectral analysis of falling droplets that exhibit lasing. Single droplet investigations serve as, among other purposes, a preliminary study for spray and combustion researchers. The described setup provides a valuable tool for the evaluation of microdroplet investigations with laser-spectroscopic techniques that rely on laser-induced fluorescence (LIF) or similar spectroscopical phenomena. The emphasis is that both spatial and spectral information are obtained from single-shot images of a falling droplet. Furthermore, combining spatial imaging and a spatially resolving optical multichannel analyzer makes a pointwise rastering of the droplets spectrum possible. This allows for the (almost) unambiguous determination of sources of influence on the spectrum of these droplets-such as geometrical distortion and lasing, nondissolved tracer lumps, and similar phenomena. Although the focus is on the experimental technique itself, we supplement detailed studies of lasing in falling microdroplets. These results were obtained with the aim of developing a system for measuring temperature distributions in droplets and sprays. In the light of these results the practice of calibrating a droplets spectrum by use of a bulk liquid sample needs to be critically reviewed.  相似文献   

6.
In this communication, we present the experimental results of two- and three-photon excitation studies on silicon quantum dots (QDs) in chloroform (as well as in water) by using femtosecond laser pulses with wavelengths of 778 and 1335 nm and a pulse duration approximately 160 fs. The photoluminescence spectral distributions are nearly the same upon one-, two-, and three-photon excitation. With one- and two-photon excitation, the temporal relaxation measurements of photoluminescence emission manifest the same multiexponential decay behavior in the time range from 0.05 ns to 15 mus, characterized by three successive decay constants: 0.75 ns, 300 ns, and 5 mus, respectively. Finally, the two-photon absorption spectrum in the spectral range of 650-900 nm and the three-photon absorption spectrum in the spectral range of 1150-1400 nm have been measured.  相似文献   

7.
We report experimental and theoretical studies of the temporal, spectral, and spatial features of a superbroadband laser. The results obtained show that the superbroadband room-temperature operable LiF:F(2)(-) color-center laser can provide low-coherence, high-intensity laser radiation with a spectral width of 1400 A centered at 1.14 mum and 700 A in the visible range from green to red and exhibit good spatial collimation with a divergence of between 5 and 6 mrad. Oscillation of all the lines of a superbroadband spectrum is completely synchronous and occurs almost simultaneously with the pump pulse, exhibiting 4-9-ns pulse delay at 20-ns pump pulse duration. Second-harmonic generation of superbroadband oscillation spectrum was realized with an overall efficiency of 10%.  相似文献   

8.
Dry water is a free-flowing powder consisting of numerous solid particle-stabilized water droplets with typical sizes and volumes of 10?6–10?4 m and 10?3–103 pL, respectively. We describe the first characterization of dry water stabilized with hydrophobic silica nanoparticles, by using laser diffraction droplet size distribution analysis. The water droplet dimensions were measured to be a few tens of micrometers in air, by using the laser diffraction method. These dimensions correspond well with measurements by both laser diffraction and optical microscopy methods for a Pickering-type water-in-n-dodecane emulsion prepared by dispersing dry water in n-dodecane. Optical microscopy confirmed that the dry water consisted of flocs of non-spherical water droplets, and the flocs ranged in size from a few tens of micrometers to a few millimeters in air. On the basis of these results, the flocs of water droplets were proposed to dissociate into individual water droplets under the air blast during droplet size measurement by the laser diffraction method. It was also confirmed that pressurizing the dry water between two glass slides led to encapsulated water leaking from the silica nanoparticle shells. This on-demand pressure-sensitive water leak phenomenon shows a possible usage of the dry waters as a material delivery carrier.  相似文献   

9.
Kaiser T  Roll G  Schweiger G 《Applied optics》1996,35(30):5918-5924
Single optically levitated microparticles were investigated by Raman spectroscopy. The particles were composed of di-octyl-phthalate (DOP) and glycerol; these substances are not mixable and form a two-phase droplet. Measurements of the Raman spectrum confirm the formation of droplets containing both chemical species. The spectra show strong input and output structural resonances as expected. If the particle is in resonance, the field inside the particle is enhanced, and most of the inelastically scattered light is emitted from molecules close to the droplet rim. If the particle does not fulfill the resonance condition, the contribution of an individual molecule to the Raman scattering does not depend strongly on the radial position of this molecule. On this basis, the radial distribution of the two components inside the evaporating droplet was determined by time-dependent measurements of the Raman spectrum. Furthermore, elastic-light scattering and the evaporation characteristics of the particles were investigated.  相似文献   

10.
荣艳敏  银燕  陈倩 《中国粉体技术》2010,16(1):80-84,100
利用二维面对称分档云模式,讨论了气溶胶类型及浓度对混合相对流云及其降水的影响。结果表明:海洋性气溶胶谱分布在一定程度上更有利于降水的形成,随着气溶胶浓度的增加,尤其是在污染大陆性云中,暖云和冷云降水量均大幅减少。海洋性云中的大粒子和较高的过饱和度,加速了暖雨的碰撞过程和冰粒子的凝华增长;初始气溶胶浓度的增加最显著的效应是云滴数浓度和云水含量增加,云滴有效半径减小,云滴的冷却蒸发抑制对流的发展。  相似文献   

11.
《Journal of Modern Optics》2013,60(9-10):1291-1301
A new simple type of DFB dye laser is proposed. The laser consists of a dye cell and a transparent phase holographic grating mounted on the front window of the cell. In the experiment, high-quality stable transparent holographic gratings were recorded in bichromated gelatine with a single mode He-Cd laser. When pumped perpendicular to the surface of the grating the DFB laser emitted a narrow spectral line independently of the width and the position of the pump spectrum. A linewidth of 0·01 nm was measured under pumping with broadband radiation of 20 nm spectral width. Either a set of holographic gratings of a different period or a fan-shaped grating may be used in the laser for stepped or continuous spectral tuning.  相似文献   

12.
Series of time-resolved still images of the explosion dynamics of micrometer-sized water droplets after femtosecond laser-pulse irradiation were obtained for different laser-pulse intensities. Amplified pulses centered around a wavelength of 805 nm with 1-mJ energy and 60-fs duration were focused onto the droplet to initiate the dynamics. Several effects, such as forward and backward plumes, jets, water films, and shock waves, were investigated. Additionally, the influence of different pulse durations produced by chirping the laser pulses was observed.  相似文献   

13.
The development of ultrafast Raman-based detection is one of the most interesting challenges underpinning the application of droplet-based microfluidics. Herein, we describe the use of surface-enhanced resonance Raman spectroscopy (SERRS) with submillisecond time resolution as a powerful detection tool in microdroplet reactors. Individual droplets containing silver nanoparticle aggregates functionalized with Raman reporters are interrogated and characterized by full spectra acquisitions with high spatial resolution in real time. Whereas previous works coupling SERRS with droplet-based microfluidics acquire a single spectrum over single or multiple droplets, we build upon these results by increasing our temporal resolution by 2 orders of magnitude. This allows us to interrogate multiple points within one individual droplet. The SERRS signals emitted from the aggregates are utilized to access the influence of flow rate on droplet size and throughput. Accordingly, our approach allows for high-throughput analysis that facilitates the study of other biological assays or molecular interactions.  相似文献   

14.
The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.  相似文献   

15.
Experimental investigations of acoustic signals generated by individual laser-irradiated water droplets are reported. The dependence of droplet destruction thresholds on droplet radius and radiative heating rate is determined. A theoretical explanation of our experimental results is provided in terms of a model that includes the processes of droplet evaporation and fragmentation in response to intense laser heating.  相似文献   

16.
A high-power, flash-lamp-pumped, Q-switched Ho:YAG laser has been developed to produce up to 150 mJ in a 100-ns Q-switched pulse. The Ho laser was initially used in a direct detection lidar-differential absorption lidar (DIAL) system to measure vertical density profiles of aerosols and water vapor in the atmosphere. It was found, however, that the Ho laser operated simultaneously on two closely spaced spectral emission wavelengths (2.090 and 2.097 μm) and that the distribution of energy between the two wavelengths could change significantly on time scales of several seconds to minutes. Such intrapulse temporal and wavelength shifts were found to alter the atmospheric lidar return significantly because one of the laser lines coincided with a water vapor absorption line in the atmosphere. This laser spectral output problem was overcome by the use of intracavity étalons that controlled the laser spectral-temporal characteristics but reduced the laser output energy to approximately 75 mJ/pulse in a 100-ns pulse length. These results are important as they serve to point out the difficulties of developing and using a high-power 2.1- μm Ho laser for atmospheric lidar when high-resolution spectral and temporal characteristics can significantly influence the lidar return and be misinterpreted as resulting from atmospheric signals.  相似文献   

17.
The emission spectra of laser erosion plasma formed during the action of a periodic pulsed radiation of neodymium laser on poly-and monocrystalline CuInS2 targets have been studied. The absolute and relative contributions of various spectral lines to the total emission spectrum are evaluated. An analysis of the common and distinctive features of the emission spectra of poly-and monocrystalline targets shows that the degree of ordering of the target structure significantly influences the laser-induced processes of atomization and ionization of the ablated material.  相似文献   

18.
Inkjet printing of a liquid suspension prepared by dispersing silver powders of size around 4?nm in deionized (DI) water at 30?wt% was investigated in this study. By comparing with the results of pure DI water, the effects of nanoparticles on droplet formation between the nozzle and the substrate were also studied. A bipolar pulse waveform was employed in driving the piezoelectric printhead with pulse voltage set as the primary variable of this study. Observations showed that a higher driving pulse voltage was required for the silver suspension to form droplets than DI water. The liquid column broke up at the nozzle orifice for DI water while the silver suspension broke up further away below the nozzle office. It was also observed that the droplet size of the silver suspension was smaller than that of DI water. For the silver suspension the liquid column formed was thinner and longer and the pinch-off time of the liquid column to form droplets was also longer. However, the characteristic adjustment time for droplet recombination was shorter for the silver suspension than for DI water.  相似文献   

19.
Vapor-phase measurements by linear Raman spectroscopy are performed in the vicinity of methanol droplets. Several types of interference by these droplets are identified and removed by appropriate filtering. This procedure, together with the phase-dependent spectral shift of the OH stretching vibration frequency, is proved to permit single-pulse linear Raman measurements of methanol vapor and nitrogen on a line with coexisting droplets. Laser-induced droplet breakdown is found to limit the applicable laser irradiance to approximately 2 GW/cm(2) and is avoided by use of a flash-lamp-pumped dye laser with high energy (1-7 J) and long pulses (1.5 mus).  相似文献   

20.
At present, bioinspired functional surfaces have garnered widespread research attention due to the application of directional droplets movement. Herein, inspired by the anisotropic of rice leaves and conical structures of cactus, a bionic wedge-shaped surface with microstructure of “rice leaf” based on the laser method is reported. In addition, the impact of the microstructure geometrical parameters in the wedge-shaped surface on the droplet moving anisotropy and manipulation capacity is discussed. Herein, it is found that the movement distance of droplets is effectively improved by regulating the rib-like microstructure topography and changing the wedge angle. Meanwhile, the movement distance and spreading direction of droplets are controlled by constructing an alternating interface. The results demonstrate that the droplet got optimal displace distance, up to 13 mm by 6.43 s, with the rib-like microstructure of 0.03 mm and the wedge angle of 10°. When the droplet volume is 40 μL, the droplet is able to separate from the control distance in the alternating interface, after that the droplet moves along the new microstructure direction in the wedge-shaped surface. Herein, it provides a useful reference for droplet directional movement and water collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号