首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optical and biological measurements were performed in Lake Ülemiste in the summer of 1997 (four measurement days), and from May to October in 1998 (12 measurement days). This kind of data, describing the type and amount of optically active substances in the water, phytoplankton characteristics, the underwater light field, and temperature–oxygen situation in the lake are necessary when estimating the ecological state of the lake. Lake Ülemiste is the main drinking water reservoir of Tallinn, the capital of Estonia. Phytoplankton abundance and biomass, chlorophyll a and suspended matter were determined from collected Lake Ülemiste water samples in the laboratory. Spectrophotometrical processing of the filtered and unfiltered water was carried out to describe the beam attenuation coefficient spectra and optical influence of yellow substance in the water. Vertical profiles of downwelling irradiance of the PAR (400–700 m) region of the spectrum (and from these data the averaged over depth diffuse attenuation coefficient) were determined. The relative transparency of the water was estimated by using a Secchi disk. Passive optical remote measurements were episodically made from aboard a boat. Results obtained confirmed that Lake Ülemiste is turbid (almost hypertrophic), comparable with most turbid lakes in Estonia (e.g. Lake Võrtsjärv) and Finland (Lake Tuusulanjärvi). Its chlorophyll a content varied within the range 13–121 mg m–3, phytoplankton biomass 3–107 mg L–1, phytoplankton abundance 65 000–999 000 mL–1, suspended matter 8–34 mg L–1, effective concentration of the yellow substance 6–30 mg L–1, diffuse attenuation coefficient of light in the PAR region 1.0–3.3 m–1 and a Secchi disk depth of 0.5–1.75 m. The temporal variation of the spatial averages of these parameters during 1998 was analysed. Almost all characteristics showed an increase from May to midsummer with a maximum in late July or in August (correspondingly the Secchi depth values were minimal in late summer). The amount of yellow substance was an exception, which was nearly constant during the observation period. The maximum level of chlorophyll a content in July and August 1998 markedly exceeded that in 1997, despite the fact that the summer of 1997 was sunny, but the summer of 1998 was cold and rainy. The correlative relationships between the different parameters were investigated together with the respective data for other lakes. They show that the data of Lake Ülemiste supplemented the correlation graph in the region of turbid lakes, whereby in all cases the correlation coefficient increased following the addition of Lake Ülemiste data. The highest correlation coefficient was obtained when light attenuation coefficient values were correlated with a sum of weighted concentrations of chlorophyll a, yellow substance and suspended matter (multiple regression analysis).  相似文献   

2.
Satellite remote sensing methods adopting wavelengths in the red and near infra-red have been shown to be superior to the standard blue to green ratio based approaches in the detection of algal blooms under turbid, eutrophic conditions. Here, the MERIS Maximum Chlorophyll Index (MCI) has been explored as a tool for monitoring algal blooms in North America's inland waters where waters range from optically complex, turbid, eutrophic conditions, to low chlorophyll and oligotrophic conditions. Assessment of the MERIS MCI product is made for intense blooms of cyanobacteria in Lake of the Woods, algal blooms in turbid waters of Lake Erie, and low chlorophyll conditions in Lake Ontario. The MCI product is shown to be a versatile tool in monitoring intense surficial algal blooms with chlorophyll concentrations in the 10–300 mg m? 3 range, while limited in its application to low-biomass conditions as observed in Lake Ontario. Wavelength shifts in the position of the MCI peak for different chlorophyll concentration ranges, as well as variations in the inherent optical properties of water colouring constituents, are anticipated to account for regional variations in MCI–chlorophyll relationships and potentially hinder a universally applicable quantitative MCI product.  相似文献   

3.
A large-scale study of Saginaw Bay was initiated in 1990 and continued through 1993 to examine the effects of the zebra mussel colonization which began in summer/fall 1991. Saginaw Bay responded quickly to the zebra mussel colonization, as fall 1991 values of chlorophyll were similar to 1992 and 1993 values. In inner Saginaw Bay, where most zebra mussels were found, chlorophyll, kPAR, and total phosphorus values decreased, and Secchi disk depth increased during the study period, regardless of the presence or absence of zebra mussels at a specific station. At outer bay control stations no significant differences were found for chlorophyll, kPAR, and Secchi disk values. In order to examine longer-term trends, water quality data from 1979–1980 (STORET) were combined with our 1990 data (pre-zebra mussel period) and compared to values from the post zebra mussel period (fall 1991, all 1992 and 1993). At stations with high densities of zebra mussels, chlorophyll and total P decreased by 66% and 48%, respectively, and Secchi disk values increased 88%. At outer bay control stations no significant differences were found for chlorophyll or Secchi disk. When parameters were averaged throughout inner Saginaw Bay, zebra mussels caused a 59% and 43% decrease in chlorophyll and in total phosphorus and a 60% increase in Secchi disk transparency. Although zebra mussels significantly altered water quality parameters in the pelagic region of Saginaw Bay, they did not necessarily change system trophic state; rather they altered the spatial partitioning of resources.  相似文献   

4.
杨佳  范建容  张茜彧  于江  朱昕 《人民长江》2019,50(7):98-103
悬移质泥沙是水环境的重要参数之一,其含量的变化对流域生态环境有着多方面的影响。传统研究方法能够实现悬移质泥含量的精确分析,但存在布点有限、时效不足等问题,而遥感技术可弥补传统研究方法的不足,实现大面积水域的同步观测。基于悬移质泥沙含量遥感反演的4类模型:物理模型、半分析模型、经验模型、人工智能算法模型,总结了Ⅱ类水体悬移质泥沙含量遥感反演的研究进展,探讨了反演研究中存在的离水辐亮度提取难度大、混合像元不易分解等问题,并针对我国内陆山区河流,提出山区Ⅱ类水体悬移质泥沙含量遥感反演发展面临的关键问题。  相似文献   

5.
The feasibility of satellite-based monitoring of phytoplankton chlorophyll a concentrations in Lake Erie is assessed by applying globally calibrated, ocean-derived color algorithms to spatially and temporally collocated measurements of SeaWiFS remote sensing reflectance. Satellite-based chlorophyll a retrievals were compared with fluorescence-based measurements of chlorophyll a from 68 field samples collected across the lake between 1998 and 2002. Twelve ocean-derived color algorithms, one regional algorithm derived for the Baltic Sea's Case 2 waters, and a set of regional algorithms developed for the western, central and eastern basins of Lake Erie were considered. While none of the ocean-derived algorithms performed adequately, the outlook for the success of regionally calibrated and validated algorithms, with forms similar to the ocean-derived algorithms, is promising over the eastern basin and possibly the central basin of the lake. In the western basin, each of the regional algorithms considered performed poorly, indicating that alternative approaches to algorithm development, or to satellite data screening and analysis procedures will be needed.  相似文献   

6.
Obtaining, analyzing and understanding the seasonal dynamics of water clarity is of importance for understanding and managing lakes and sustaining their ecosystem services. This study aimed to explore the seasonal dynamics of water clarity and to analyze how water level, wind velocity and total precipitation influence this dynamics in Lake Dahuchi, China. The Secchi disk depths recorded in the field and derived from Moderate Resolution Imaging Spectroradiometer (MODIS) images together demonstrated a seasonal pattern of water clarity, which was lower in winter and spring, increased in April or May to reach the highest values in summer, upon which it gradually declined from September onward. Piecewise linear regression analysis between water clarity and water level showed that water level could explain 70% of the variation of the logarithm of Secchi disk depth. The water clarity of Lake Dahuchi was primarily controlled by suspended sediment, while the seasonal variation of water level induced different sediment resuspension, thus we concluded that the water clarity seasonal dynamics of Lake Dahuchi was mainly regulated by seasonal variation of water level.  相似文献   

7.
Morse Reservoir, a major water supply for the Indianapolis metropolitan area, IN, USA, experiences nuisance cyanobacterial blooms due to agricultural and point source nutrient loadings. Hyperspectral remote sensing data from both in situ and airborne AISA measurements were applied to an adaptive model based on Genetic Algorithms-Partial Least Squares (GA-PLS) by relating the spectral signal with total nitrogen (TN) and phosphorus (TP) concentrations. Results indicate that GA-PLS relating in situ spectral reflectance to the nutrients yielded high coefficients of determination (TN: R 2?=?0.88; TP: R 2?=?0.91) between measured and estimated TN (RMSE?=?0.07 mg/L; Range: 0.6–1.88 mg/L), and TP (RMSE?=?0.017; Range: 0.023–0.314 mg/L). The GA-PLS model also yielded high performance with AISA imaging data, showing close correlation between measured and estimated values (TN: RMSE?=?0.11 mg/L; TP: RMSE?=?0.02 mg/L). An analysis of in situ data indicated that TN and TP were highly correlated with chlorophyll-a and suspended matter in the water column, setting a basis for remotely sensed estimates of TN and TP. Spatial correlation of TN, TP with chlorophyll-a and suspended matters further confirmed that remote quantification of nutrients for inland waters is based on the strong association of optically active constituents with nutrients. Based on these results, in situ and airborne hyperspectral remote sensors can provide both quantitative and qualitative information on the distribution and concentration of nutrients in Morse Reservoir. Our modeling approach combined with hyperspectral remote sensing is applicable to other productive waters, where algal blooms are triggered by nutrients.  相似文献   

8.
蓝藻水华是富营养化湖泊共同面临的问题。遥感技术为快速、大范围水华监测提供了可能,选取遥感数据应首先明确不同卫星的水华监测能力。以洱海为例,对比分析HJ-1B和Landsat卫星在内陆中小湖泊水华监测的时间和空间监测能力,评价两者在水华监测中的适用性及优势。结果表明:两者均能有效识别水华,提取水华分布细节信息,相比MODIS更适合用于中小湖泊水华监测;进一步分析表明,综合两者数据监测蓝藻水华,可以更加客观统计水华时间特征,描述水华空间分布发展规律,对于其它中小湖泊利用遥感手段辅助水华监测具有参考意义。  相似文献   

9.
We present an approach that uses satellite products to derive models for predicting lake chlorophyll from environmental variables, and for investigating impacts of changing environmental flows. Lake Turkana, Kenya, is the world's largest desert lake, and environmental flows from the Omo River have been modified since 2015 by the Gibe III dam in Ethiopia. Using satellite remote sensing, we have evaluated the influence of these altered hydrological patterns on large‐scale lake phytoplankton concentrations for the first time. Prior to dam completion, strong seasonal cycles and large spatial gradients in chlorophyll have been observed, related to natural fluctuations in the Omo River's seasonal discharge. During this period, mean lake chlorophyll showed a strong relationship with both river inflows and lake levels. Empirical models were derived which considered multiple hydro‐climatic drivers, but the best model for predicting chlorophyll‐a was a simple model based on Omo River discharge. Application of this model to data for 2015–2016 estimated that during the filling of Gibe III annual mean Lake Turkana chlorophyll declined by 30%. Future water management scenarios based on Gibe III operations predict reduced seasonal chlorophyll‐a variability, while irrigation scenarios showed marked declines in chlorophyll‐a depending on the level of abstraction. These changes demonstrate how infrastructure developments such as dams can significantly alter lake primary production. Our remote sensing approach is easy to adapt to other lakes to understand how their phytoplankton dynamics may be affected by water management scenarios.  相似文献   

10.
Spectral subsurface irradiance reflectance—intrinsic water color—was derived from above-water radiance measurements using a hand-held spectroradiometer along a transect on Keweenaw Bay, Lake Superior. The reflectance spectra were typical of oligotrophic lacustrine waters. The reflectance peak wavelength shifted from 484 nm at stations farthest offshore to 540 nm near the head of the bay. This change coincided with a decrease in Secchi-disk depth from 16 to 8 m, and an increase in concentrations of chlorophyll a and total suspended matter from about 0.45 to 0.60 mg m−3 and from 0.3 to 0.5 g m−3, respectively. The concentration of chromophoric dissolved organic matter (gilvin), expressed as the absorption of filtrate at 440 nm, varied between 0.11 and 0.2 m−1. Like almost all inland waters, Keweenaw Bay should be classified as a Case 2 water due to the concentrations of gilvin and inanimate particles relative to plankton biomass. A model for chlorophyll-a estimation from spectral reflectance that adequately predicted concentrations in mesotrophic to highly eutrophic Case 2 waters elsewhere gave negative values when applied to the Keweenaw Bay transect. Evidently, there is a need of algorithm development for oligotrophic lacustrine waters. Estimates improved using a modified blue to green band ratio algorithm previously applied for remote sensing of oceanic waters. In optimization of semi-empirical algorithms for estimation of plankton biomass in Lake Superior, absorption by gilvin as well as by inanimate particles merits special consideration.  相似文献   

11.
Zimapán Reservoir is located in the central plateau of Mexico. Its main purpose is the generation of electric energy, and it has a high mean depth (52.40 m). The reservoir has two tributaries: the Tula River, which receives the wastewater of Mexico City, and agricultural run-off; and the San Juan River, with municipal and industrial wastewater. The population growth together with the dry climate are generating pressure on the water resource. The purpose of this study is to characterize the trophic state of Zimapán Reservoir and its trend on a five year study. It is warm with the presence of thermocline between 8 and 14 m. It was found hypereutrophic for the nutrient concentration (average TP and TN of 1,381 and 5,977 microg.L(-1), respectively), and eu-hypereutrophic in case of the Secchi disk (1.94 m) and the chlorophyll concentration (38 microg.L(-1)). The trend analysis showed and increment of nutrients in the period, but a decrement in Secchi disk and chlorophyll results. Nutrients are present in a very high concentration. The reservoir is gradually increasing its trophic state condition.  相似文献   

12.
遥感与水利事业发展   总被引:2,自引:0,他引:2  
介绍自1980 年以来,遥感技术在水利行业所经历的学习、试验、应用和发展等四个阶段,显示了遥感技术客观、宏观、快速、动态和经济的优势.并着重从洪涝灾害监测评估、水资源和水环境调查、土壤侵蚀和水土保持、河道及水库泥沙淤积监测、河湖及河口演变调查以及土壤水分及旱情监测等几个方面反映了遥感这一新技术在水利事业发展中所发挥的作用.  相似文献   

13.
In recent decades, three important events have likely played a role in changing the water temperature and clarity of the Laurentian Great Lakes: 1) warmer climate, 2) reduced phosphorus loading, and 3) invasion by European Dreissenid mussels. This paper compiled environmental data from government agencies monitoring the middle and lower portions of the Great Lakes basin (lakes Huron, Erie and Ontario) to document changes in aquatic environments between 1968 and 2002. Over this 34-year period, mean annual air temperature increased at an average rate of 0.037 °C/y, resulting in a 1.3 °C increase. Surface water temperature during August has been rising at annual rates of 0.084 °C (Lake Huron) and 0.048 °C (Lake Ontario) resulting in increases of 2.9 °C and 1.6 °C, respectively. In Lake Erie, the trend was also positive, but it was smaller and not significant. Water clarity, measured here by August Secchi depth, increased in all lakes. Secchi depth increased 1.7 m in Lake Huron, 3.1 m in Lake Ontario and 2.4 m in Lake Erie. Prior to the invasion of Dreissenid mussels, increases in Secchi depth were significant (p < 0.05) in lakes Erie and Ontario, suggesting that phosphorus abatement aided water clarity. After Dreissenid mussel invasion, significant increases in Secchi depth were detected in lakes Ontario and Huron.  相似文献   

14.
Accurate assessment and monitoring of coastal and inland water quality by satellite optical remote sensing is challenging due to improper atmospheric correction algorithm, inaccurate quantification of in-water constituents' concentration and a lack of efficient models to predict the water quality status. The present study aims to address the latter two parts in conjugation with an appropriate atmospheric correction algorithm to assess trophic status and water quality conditions of two coastal lagoons using Landsat-8 OLI data. Three vital underwater light attenuating factors, directly related to water quality, are considered namely, turbidity, chlorophyll and colored dissolved organic matter (aCDOM). These water quality parameters are quantified based on certain sensitive normalised water-leaving radiance band ratios and threshold values. To assess the accuracy of the derived products, these algorithms were applied to independent in-situ data and statistical evaluation of the results showed good agreement between the estimated and measured values with the errors within desirable limits. Being a primary nutrient indicator, the chlorophyll concentration was used to evaluate Trophic State Index. The Water Quality Index was derived from three parameters namely, chlorophyll concentration, turbidity and aCDOM(443) which were expressed in terms of Trophic State Index, Turbidity Index and Humic-Fulvic Index, respectively. The Water Quality Index maps, derived using a Fuzzy Inference System based on the Centre of Gravity method, provided insights into spatial structures and temporal variability of water quality conditions of the coastal lagoons which are influenced by anthropogenic factors, hydrographic changes and land-ocean-atmospheric interaction processes.  相似文献   

15.
为快速反演较高精度土壤水分,提出用遗传算法优化后的神经网络辅以多源遥感数据的方法进行地表土壤水分反演。首先建立4层神经网络并用遗传算法优化此网络,之后以雷达数据不同极化(VV、VH、VH/VV)的后向散射系数、雷达入射角、光学数据的归一化植被指数(NDVI)、以及高程数据作为网络的输入,土壤水分数据为输出,对网络进行训练与仿真,再运用地表实际测量数据与反演数据做对比验证。结果表明:反演结果与实际测量数据相关性良好,R2可达0. 79。采用遗传算法对神经网络优化的土壤水分反演方法可行,且添加光学数据等辅助数据后土壤水分反演效果更优,为多源遥感土壤水分的协同反演研究提供新思路。  相似文献   

16.
Monitoring the water level and volume changes of lakes and reservoirs is essential for deepening our understanding of the temporal and spatial dynamics of water resources in the Yellow River Basin, with a view to better utilizing and managing water resources. In recent years, there have been many studies on monitoring water level and volume changes in inland waters, but they were mainly focused on radar altimetry and the full waveform LiDAR ICESat, which was retired in 2010. Few studies based on the latest photon-counting LiDAR ICESat-2 have been reported. Compared with previous sensors, ICESat-2 has great advantages in footprint size, transmitting frequency, pulse number, etc, but its performance in monitoring water level and volume changes in inland waters has not been fully explored. Here we investigated the spatial distribution of water level and volume changes of 11 lakes and 8 reservoirs in the Yellow River Basin based on ICESat-2 and Google Earth Engine, and analyzed the factors affecting the measurement uncertainties. In-situ validation of lake level in Lake Qinghai indicates that the Root Mean Square Error (RMSE) of our result is only 7 cm after the reference coordinate system conversion. We found that the water level trend of the natural lake shows significant seasonal variations, while the water level trend of the reservoir shows a sharp rise and fall. In addition, precipitation plays a decisive role in the changes in natural lake levels and indirectly affects the artificial control of reservoirs’ water discharges. The uncertainty of water volume change monitoring is mainly affected by water level measurement uncertainty for lakes, while for reservoirs, that is affected by the combination of water level and area measurement uncertainties. The stability of lake level measurement increases with the increase in photon counts. The introduction of ICESat-2 ATL13 Significant Wave Height might lead larger standard deviation in water level measurement. According to the law of propagation of uncertainty, the uncertainty of the water volume change estimation by the combination of ICESat-2 and GEE is less than 9 %.  相似文献   

17.
卫星测高已经发展为成熟的海洋观测技术,然而在内陆水域的观测精度仍有待提高,其关键在于消除雷达回波中"陆地污染"效应的影响.在近海波形净化技术的基础上,针对内陆水域特点,提出了改进的波形净化技术,用于剔除回波中"陆地污染"导致的异常波峰.在净化波形的基础上,结合优化的重跟踪算法进行波形重跟踪改正,达到提高内陆水域测高观测...  相似文献   

18.
The impacts of power boating and water skiing on lakes and reservoirs   总被引:1,自引:0,他引:1  
Over the last 30 years, the use of motorised recreational craft on inland waters has increased significantly, and it is likely that this trend will continue. This growing use of rivers, lakes and water storage reservoirs for recreational purposes has led to concerns about increasing anthropological pressures on freshwater environments. As a result, numerous studies focusing on the possible impact of power boats on inland waterbodies have been undertaken since the early 1970s, when attention started to be drawn to environmental impacts associated with this type of recreation. This paper presents an overview of identified and documented physical, chemical and biological impacts as a result of motorised recreational activities on lakes and reservoirs. Relevant literature, including research papers, government reports and bibliographies, was consulted in the preparation of this review. It has become obvious that in the past, biological impacts have been underestimated. Thus, there is a need for further, more focused, research into the impacts on not only freshwater ecosystems but on terrestrial biota surrounding recreational waters.  相似文献   

19.
湖北省水环境遥感监测示范系统的设计与应用   总被引:1,自引:0,他引:1  
介绍基于环境一号卫星(HJ-1)CCD影像的湖北省水环境遥感监测示范系统的设计与应用。该示范系统以环境一号卫星CCD影像为主要数据源,结合地面实测数据,以东湖、梁子湖等10个湖泊为示范研究区,开展中小型湖泊湖网系统水环境遥感监测研究与应用。结果表明,该系统具有实现水环境指标提取、水环境评价以及专题产品制作等功能,可为湖北省水环境监测提供遥感产品与技术支持。  相似文献   

20.
As the global water balance accelerates in a warming climate, extreme fluctuations in the water levels of lakes and aquifers are anticipated, with biogeochemical, ecological and water supply consequences. However, it is unclear how site-specific factors, such as location, morphometry and hydrology, will modulate these impacts on regional spatial scales. Here, we report water level time series collected by citizen scientists for 15 diverse inland lakes in the upper Laurentian Great Lakes region from 2010 to 2020, and we compare these time series with those for the two largest Great Lakes, Lake Superior and Lake Michigan-Huron. Combined with historical data (1942–2010), the findings indicate that lakes spanning seven orders of magnitude in size (10?2 to 105 km2) all rebounded from record low to record high water levels during the recent decade. They suggest coherent water level oscillations among regional lakes (large and small) implying a common, near-decadal, climatic driver that may be changing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号