首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A five-residue sequence motif (VTLVG) located at positions 15-19 from the C-terminus of family I.3 lipase from Pseudomonas sp. MIS38 (PML) and an extreme C-terminal motif (DGIVIA) located at the C-terminus of PML are relatively well conserved in the passenger proteins of type 1 secretion system (T1SS). To analyze the role of these motifs, four mutant proteins of PML (PMLΔ5, PMLΔ10, 3A-PML and 2A-PML) were constructed. PMLΔ5 and PMLΔ10 lack the C-terminal 5 and 10 residues of PML, respectively. 3A-PML has triple mutations within an extreme C-terminal motif and 2A-PML has double mutations within a five-residue sequence motif. Secretion of these proteins was analyzed using Escherichia coli DH5 cells carrying Lip system (T1SS for family I.3 lipase). The secretion level of 2A-PML was dramatically reduced when compared with that of PML, whereas the secretion level of 3A-PML was comparable to that of PML, indicating that a five-residue sequence motif, instead of an extreme C-terminal motif, is required for secretion of PML. None of the mutations and truncations seriously affects the enzymatic activity of PML. However, 3A-PML, PMLΔ5 and PMLΔ10 were less stable than PML by 2.1, 7.6 and 7.6°C in T(1/2), respectively, and by 5.0, 21.3 and 17.9 kJ/mol in ΔG(H(2)O), respectively. These results indicate that an extreme C-terminal motif of PML is important for stability.  相似文献   

2.
Two mutants of human lysozyme were synthesized. Mutant A92D,in which Ala92 was substituted by Asp, contains a partial Ca2+-bindingsite and mutant M4, in which Ala83, Gm86, Asn88 and Ala92 werereplaced by Lys, Asp, Asp and Asp respectively, contains thecomplete Ca -binding site of bovine a-lactalbumin. The Ca2+-bindingconstants of wild type human lysozyme and of mutants A92D andM4, measured at 25C and pH 7.5, were 2(1) x 102 M"1, 8(2)x l^M"1 and 9(0.5) x 10* M"1 respectively. Information gatheredfrom mkrocalorimetrk and CD spectro-scopic measurements indicatesthat the conformational changes of the M4 mutant lysozyme, inducedby Ca2+ binding, are smaller than those observed for bovinea-lactalbumin and for the Ca2+-binding equine lysozyme. At pH4.5, the thermostability of both the apo and Ca2+ forms of theA92D human was decreased in comparison with that of native humanlysozyme. In particular, within the apo form of this mutantan a-helix-containing sequence was destabilized. In contrast,at the same pH the thermostability of the apo and Ca2+ formsof the M4 mutant lysozyme was increased. The e-ammonium groupof the Lys83 side chain is assumed to be responsible for thestabilization of the apo form of this mutant.  相似文献   

3.
4.
Drosophila GCM (glial cell missing) is a novel DNA-binding proteinthat determines the fate of glial precursors from the neuraldefault to glia. The GCM protein contains the functional domainthat is essential for recognition of the upstream sequence ofthe repo gene. In the DNA-binding region of this GCM protein,there is a cysteine-rich region with which divalent metal ionssuch as Zn2+ must bind and other proteins belonging to the GCMfamily have a corresponding region. To obtain a more detailedinsight into the structural and functional features of thisDNA-binding region, we have determined the minimal DNA-bindingdomain and obtained inductively coupled plasma atomic emissionspectra and 1H–15N, 1H–15N–13C and 113Cd2+NMR spectra, with or without its specific DNA molecule. Consideringthe results, it was concluded that the minimal DNA-binding domainincludes two Zn2+-binding sites, one of which is adjacent tothe interface for DNA binding. Systematic mutational analysesof the conserved cysteine residues in the minimal DNA-bindingdomain revealed that one Zn2+-binding site is indispensablefor stabilization of the higher order structure of this DNA-bindingdomain, but that the other is not.  相似文献   

5.
A simplified procedure for the measurement of activity was developed for lipases (EC 3.1.1.3) fromChromobacterium viscosum, Candida rugosa, Aspergillus niger andRhizopus arrhizus. It differs from existing procedures in that olive oil, refined with a bleaching clay, was used as the substrate, periodic sonication was applied to promote efficient emulsification, the hydrolysis time was extended to 1 hr, and no additive such as protective colloids and surfactants were used. The activity was determined arbitrarily for that amount of lipase required to bring about 24% hydrolysis/hr at room temperature Unlike currently used assay procedures, the present method gives results which are highly reproducible with a maximum standard deviation of 2.5% and, more commonly, less than 1.00%.  相似文献   

6.
In this study, novel garnet-type yafsoanite tellurate Ca3Zn3(TeO6)2:Sm3+ phosphors are successfully synthesized using the traditional high-temperature solid-state reaction. The phase purity of the obtained phosphors is analyzed by X-ray diffraction and Rietveld refinement studies. Morphological variations are also observed with the different concentrations of Sm3+ ions substitution, which is analyzed using Scanning Electron Microscopy (SEM). The photoluminescent properties of the phosphors are systematically investigated. Results show that the samples display the strongest emission peak at 612 nm under the near-ultraviolet (n-UV) 409 nm excitation. This peak can be ascribed to the 4G5/2 → 6H7/2 transition of Sm3+. The Ca3Zn3(TeO6)2:Sm3+ phosphor shows a high color purity, exhibits excellent thermal stability and good color drifting resistance. Furthermore, red and white light-emitting diodes have been successfully prepared. The white light-emitting diodes (w-LEDs) demonstrates a high color rendering index (CRI, Ra) and low correlated color temperature (CCT). This study introduces a new orange-red-emitting phosphor and discusses its application in herb-growth w-LEDs.  相似文献   

7.
采用Ca2+和Fe3+作为沉淀剂分离HPO32-和H2PO2-,研究了Ca2+和Fe3+的加入量、反应温度和陈化时间对分离效果的影响。结果表明,Ca2+作为沉淀剂时,[Ca2+]/[HPO32-]=0.94,处理温度50℃,陈化时间5h条件下HPO23-去除率达到93.1%,而H2PO2-的损失率为1.06%。Fe3+作为沉淀剂时,[Fe3+]/[HPO23-]=1.02,室温下处理,陈化时间6h条件下HPO32-去除率达到75.4%,而H2PO2-的损失率为10.6%。  相似文献   

8.
《Ceramics International》2020,46(12):19738-19742
LaCrO3 shows excellent thermal stability and good emissivity, and can be used as a potential thermal protection material for hypersonic vehicle. In this study, LaCrO3 and Ca2+-Sr2+ doped LaCrO3 were prepared by solid state reaction at 1400 °C for 2 h. The microstructures of the samples and effects of Ca2+-Sr2+ doping on the infrared emissivity of LaCrO3 were studied by XRD, XPS, FT-IR, and UV–VIS–NIR spectrophotometer. The results show that after doping Ca2+ and Sr2+ ions, the infrared emissivity of all samples has significantly improved at 2.5–10 μm, from 0.61 (minimum value) to above 0.90. In the range of 10–14 μm, the emissivity of pure LaCrO3 and La0.8CaxSr0.2-xCrO3 samples shows a similar trend and all remains above 0.97. Therefore, doping Ca2+ and Sr2+ can significantly increase the emissivity of LaCrO3 at 2.5–10 μm, which makes it have a wider application prospect in the field of high temperature thermal protection.  相似文献   

9.
10.
为排除Na+对硅酸聚合的影响,用酸解水淬硅酸钙制备了不含金属离子的硅酸溶液及含Ca2+, Al3+的硅酸溶液,研究了加入Ca2+, Al3+对体系聚合行为的影响. 结果表明,加入Ca2+后体系pH值略微降低,加入Al3+后体系pH值显著降低. 初始pH≤2时,Al3+对硅酸聚合起促凝作用,初始pH>2时,Al3+起缓凝作用. Ca2+对硅酸聚合影响不大. 硅酸凝胶后,含Al3+硅酸体系中形成Al?O?Si键,阻碍了凝胶结构水脱附;Ca2+则阻碍凝胶的晶化转变过程,且凝胶中的结构水变少. 不含金属离子、含Ca2+、含Al3+体系的化学式分别为SiO2×0.52H2O, SiO2×0.36H2O, SiO2×1.50H2O.  相似文献   

11.
Engineering sophisticated structure of Al2O3 and controlling the structure of counterpart metal active sites remain challenges to achieve a high catalytic-performance in heterogeneous catalysis. Herein, we present a confinement strategy to stabilize homogeneous Ni by penta-coordinated Al3+ anchoring sites in Al2O3. This approach is involved in using a metal–organic framework as host to load Ni2+ ions, by the aim of producing a confined Ni/Al2O3 catalyst after a standard calcination. Metal–support interaction between Ni and Al2O3 was tailored to be medium to avoid the formation of inactive NiAl2O4, which favors the generation of more available Ni active sites accessible to the reactants. The resultant Ni/Al2O3 exhibited superior catalytic performance in comparison with the control Ni/Al2O3 in CO methanation owing to the presence of defective sites on sufficient Ni0 surface. Furthermore, the presence of oxygen vacancies on Al2O3 and hydrogen spillover contributed toward excellent coke resistance properties in the reaction.  相似文献   

12.
BACKGROUND: Enzyme inhibition is one of the constraints of reactions catalysed by enzymes, and information is required on the inhibition mechanisms that affect the process yield. Therefore the aim of the present study was to investigate the effect of hydrolysis products and ions on the hydrolysis of lactose recovered from whey and enzyme inactivation during the reaction. The experiments were carried out in 250 mL of 25 mmol L?1 phosphate buffer solution using β‐galactosidase from Kluyveromyces marxianus lactis in a batch reactor system. RESULTS : The degree of lactose hydrolysis (%) and the residual enzyme activity (%) in the presence and absence of lactose over time were investigated versus hydrolysate amount, glucose and galactose concentrations and Mg2+, Mn2+ and Ca2+ ion concentrations. The hydrolysis degree decreased with the addition of all hydrolysis products, as enzyme inhibition occurred. The residual enzyme activity increased with the addition of hydrolysate and glucose but decreased with the addition of galactose. It was observed that Mn2+ and Mg2+ ions activated the enzyme. It was also found that the hydrolysis degree was not affected by the addition of Mn2+ ions. On the other hand, the hydrolysis degree decreased with the addition of Ca2+ ions, as the enzyme was inactivated. CONCLUSION: Evaluation of the experimental data showed that both β‐galactosidase activity and lactose hydrolysis were affected by the addition of hydrolysis products and ions. Moreover, mathematical models proposed to predict the residual lactose concentration and residual enzyme activity were confirmed by the experimental results. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
《Ceramics International》2023,49(10):15402-15412
A series of Ca2GdNbO6: xSm3+ (0.01 ≤ x ≤ 0.15) and Ca2GdNbO6: 0.03Sm3+, yEu3+ (0.05 ≤ y ≤ 0.3) phosphors were synthesized by the traditional solid-state sintering process. XRD and the corresponding refinement results indicate that both Sm3+ and Eu3+ ions are doped successfully into the lattice of Ca2GdNbO6. The micro-morphology shows that the elements of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor are evenly distributed in the sample, and the particle size is about 2 μm. The optical properties and fluorescence lifetime of Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors were detailedly studied. The emission peak at 5D07F2 (614 nm) is the strongest and emits red light under 406 nm excitation. The increase of Eu3+ concentration causes the energy transfers from Sm3+ to Eu3+ ions, and the transfer efficiency reaches 28.6%. Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor has a quantum yield of about 82.7%, and thermal quenching activation energy is of 0.312 eV. The color coordinate (0.646, 0.352) of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphors is located in the red area. The LED device fabricated based on the above phosphor emit bright white light, and CCT = 5400 K, Ra = 92.8. The results present that Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors potentially find use in the future.  相似文献   

14.
用分光光度计等测试技术研究了磷铝酸盐水泥水化时Ca2+,Al3+离子浓度随外加剂掺量不同的变化,并探讨了磷铝酸盐水泥的水化动力学.结果表明:一定掺量的外加剂可调节Ca2+,Al3+离子的析出,改变磷铝酸盐水泥水化加速期的长短,起到了调凝的效果,在磷铝酸盐水泥水化加速期,其水化动力学遵循方程:[1-(1-α)1/3]N=Kt.Ca2+离子的溶出主要受自动催化反应控制,N为1.51~1.67;Al3+离子的溶出则主要受扩散反应控制,N为5.37.  相似文献   

15.
Enzyme-polymer conjugates are complex molecules with great practical significance. This work was designed to develop a novel enzyme-polymer conjugate by covalently coupling a zwitterionic polymer with side dimethyl chains (pID) to Candida rugosa lipase (CRL) via the reaction between the anhydrides of polymer chains with the amino groups of the enzyme. The resulting two CRL-pID conjugates with different pID grafting densities were investigated in term of the catalytic activity, stability and structural changes. In comparison with native CRL, both the CRL conjugates displayed 2.2 times higher activity than the native enzyme, and showed an increase in the maximum reaction rate (Vmax) and a decrease in the Michaelis constant (Km), thus resulting in about three-fold increases in the catalytic efficiency (kcat/Km). These are mainly attributed to the activation of lipase by the hydrophobic alky side chains. Moreover, the thermostability and pH tolerance of the lipase conjugates were significantly enhanced due to the stabilizing effect of the zwitterion moieties. For instance, a five-fold increase of the enzyme half-life at 50℃ for the high-pID conjugated CRL was observed. Spectroscopic studies reveal that the pID conjugation protected the enzyme in the changes in its microenvironment and conformation, well correlating with enhanced activity and stability of lipase conjugates. The findings indicate that enzyme conjugation to the zwitterionic polymer is promising for improving enzyme performance and deserves further development.  相似文献   

16.
The activity of specific populations of neurons in different brain areas makes decisions regarding proper synaptic transmission, the ability to make adaptations in response to different external signals, as well as the triggering of specific regulatory pathways to sustain neural function. The endocannabinoid system (ECS) appears to be a very important, highly expressed, and active system of control in the central nervous system (CNS). Functionally, it allows the cells to respond quickly to processes that occur during synaptic transmission, but can also induce long-term changes. The endocannabinoids (eCBs) belong to a large family of bioactive lipid mediators that includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. They are produced “on demand” from the precursors located in the membranes, exhibit a short half-life, and play a key role as retrograde messengers. eCBs act mainly through two receptors, CB1R and CB2R, which belong to the G-protein coupled receptor superfamily (GPCRs), but can also exert their action via multiple non-receptor pathways. The action of eCBs depends on Ca2+, but eCBs can also regulate downstream Ca2+ signaling. In this short review, we focus on the regulation of neuronal calcium channels by the most effective members of eCBs-2-arachidonoylglycerol (2-AG), anandamide (AEA) and originating from AEA-N-arachidonoylglycine (NAGly), to better understand the contribution of ECS to brain function under physiological conditions.  相似文献   

17.
Novel reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors based on the emission of 4G5/2 → 6H9/2 transition at 651 nm with the chromatic coordinate of (0.633, 0.366) were synthesized. The crystal structure and chemical purity were identified in detail. Under the 407 nm excitation, the optimum concentration of Sm3+ ion was found to be 5 mol% dominated by the dipole-dipole interaction in the Ca2GdNbO6 host material. The color purity of the sample with optimum doping was estimated to be about 78.38%. Besides, the thermal stability was also studied, and it was further found that the emission intensity remained 65.32% at 423 K. The packaged white LED device exhibited excellent CRI and CCT values of 92.43 and 4896 K. Finally, the polydimethylsiloxane film with a stable structure and flexible property was prepared. These above results reveal that novel reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors can be applied in high CRI white communication and flexible display applications.  相似文献   

18.
Ca3Sc2Si3O12:Ce3+ (CSS:Ce) green phosphors used for white light‐emitting diodes (LEDs) are synthesized and codoped with Al3+ via a solid‐state reaction method. The crystal structure and vibrational modes are analyzed by X‐ray diffraction, Fourier transform infrared spectroscopy, and Raman scattering spectroscopy. The energy transfer behavior and optical performance are characterized by photoluminescence and excitation spectra, quantum efficiency, and time‐resolved photoluminescence. The incorporation of Al3+ into CSS:Ce can inhibit the formation of the impurity phases Sc2O3 and CeO2, improve crystallinity, and enhance the photoluminescence intensity as well as quantum efficiency. The substitution of Sc3+ with Al3+ increased the crystal field splitting of Ce3+ and resulted in the red shift of photoluminescence. The results show that Ca3Sc2?xAlxSi3O12:Ce3+ has high quantum efficiency, making it a promising green phosphor that can be collocated with a commercial 450 nm blue LED and a red phosphor for solid‐state lighting applications.  相似文献   

19.
The Eu2+-activated nitride phosphors have been widely used in solid-state lighting, but the applications in high-power white-light-emitting diodes (wLEDs) field require higher thermal stability of luminescent materials. The oxidation of Eu2+ and the damage of nitride host in the Eu2+-activated nitride phosphors are the two crucial reasons for the luminescence loss while operating. A superficial organic carbon modification is performed on the red-emitting (Sr,Ca)AlSiN3:Eu2+ phosphor via the incorporation of organic carbon by solution mixing and thermal post-treatment under the N2-H2 atmosphere. After the superficial organic carbon modification, the oxidation of Eu2+ and the formation of impurity phases on the phosphor surface are effectively reduced. When the superficial organic carbon modified sample was treated in the 2 wt.% sucrose solutions, the relative brightness is strengthened by 2.15%, the thermal quenching characteristic is improved by 8.9% at 300℃, and the aging test results show an excellent thermal stability. All above indicate that the superficial organic carbon modification is a promising technique to enhance the thermal stability of analogous Eu2+-activated nirtide phosphors.  相似文献   

20.
In this paper, the crystal structure, vacancy defect, local electron density and magnetic properties of Gd1-xCaxCrO3 (0 ≤ x ≤ 0.3) polycrystalline samples were investigated systematically. The crystal structural analyses show that all the samples are orthorhombic phase and a structural distortion happens around x = 0.3. Due to the formation of Cr4+ ions, both the lattice constant and the Cr–O bond length decrease. The results of positron annihilation spectrum reveals that the vacancy defect concentration increases and the local electron structure changes with the introduction of Ca2+ ions. The field-cooled (FC) and zero-field cooled (ZFC) curves of Gd1-xCaxCrO3 samples measured under H = 100 Oe exhibits negative magnetization characteristics due to the interaction between Gd3+ and Cr3+ ions, and the magnetism can be affected by the structural distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号