首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel experimental setup for gas microflows   总被引:1,自引:0,他引:1  
A new experimental setup for flow rate measurement of gases through microsystems is presented. Its principle is based on two complementary techniques, called droplet tracking method and constant-volume method. Experimental data on helium and argon isothermal flows through rectangular microchannels are presented and compared with computational results based on a continuum model with second-order boundary conditions and on the linearized kinetic BGK equation. A very good agreement is found between theory and experiment for both gases, assuming purely diffuse accommodation at the walls. Also, some experimental data for a binary mixture of monatomic gases are presented and compared with kinetic theory based on the McCormack model.  相似文献   

2.
Gaseous slip flow in long microchannels   总被引:18,自引:0,他引:18  
An analytic and experimental investigation into gaseous flow with slight rarefaction through long microchannels is undertaken. A two-dimensional (2-D) analysis of the Navier-Stokes equations with a first-order slip-velocity boundary condition demonstrates that both compressibility and rarefied effects are present in long microchannels. By undertaking a perturbation expansion in ϵ, the height-to-length ratio of the channel, and using the ideal gas equation of state, it is shown that the zeroth-order analytic solution for the streamwise mass flow corresponds well with the experimental results. Also, the effect of slip upon the pressure distribution is derived, and it is obtained that this slip velocity leads directly to a wall-normal migration of mass. The fabrication of wafer-bonded microchannels that possess well-controlled surface structure is described, and a means for accurately measuring the mass how through the channels is presented. Experimental results obtained with this mass-flow measurement technique for streamwise helium mass flow through microchannels 52.25-μm wide, 1.33-μm deep, and 7500-μm long for a pressure range of 1.6-4.2 atmospheres (outlet pressures at atmospheric) are presented and shown to compare favorably with the analysis  相似文献   

3.
This paper presents a comparative study of the flow of liquid and gases in microchannels of converging and diverging cross sections. Towards this, the static pressure across the microchannels is measured for different flow rates of the two fluids. The study includes both experimental and numerical investigations, thus providing several useful insights into the local information of flow parameters as well. Three different microchannels of varying angles of convergence/divergence (4°, 8° and 12°) are studied to understand the effect of the angle on flow properties such as pressure drop, Poiseuille number and diodicity. A comparison of the forces involved in liquid and gas flows shows their relative significance and effect on the flow structure. A diodic effect corresponds to a difference in the flow resistance in a microchannel of varying cross section, when the flow is subjected alternatively to converging and diverging orientations. In the present experiments, the diodic effect is observed for both liquid and gas as working fluids. The effect of governing parameters—Reynolds number and Knudsen number, on the diodicity is analysed. Based on these results, a comparison of design perspectives that may be useful in the design of converging/diverging microchannels for liquid and gas flows is provided.  相似文献   

4.
The main theoretical and experimental results from the literature about steady pressure-driven gas microflows are summarized. Among the different gas flow regimes in microchannels, the slip flow regime is the most frequently encountered. For this reason, the slip flow regime is particularly detailed and the question of appropriate choice of boundary conditions is discussed. It is shown that using second-order boundary conditions allows us to extend the applicability of the slip flow regime to higher Knudsen numbers that are usually relevant to the transition regime.The review of pulsed flows is also presented, as this kind of flow is frequently encountered in micropumps. The influence of slip on the frequency behavior (pressure gain and phase) of microchannels is illustrated. When subjected to sinusoidal pressure fluctuations, microdiffusers reveal a diode effect which depends on the frequency. This diode effect may be reversed when the depth is shrunk from a few hundred to a few m.Thermally driven flows in microchannels are also described. They are particularly interesting for vacuum generation using microsystems without moving parts.  相似文献   

5.
An accelerated discrete velocity method is presented to calculate the steady axial-symmetric flows of gaseous mixtures defined by the McCormack kinetic model. The scheme is formulated in cylindrical coordinates. Diffusion equations for the macroscopic velocity and the heat-flow are derived on the basis of the projected McCormack equations. The solutions of the kinetic equations are carried out iteratively by using the discrete velocity method. The diffusion equations are also solved in each stage of the iteration in order to accelerate the scheme. Pressure driven flows of He/Xe and Ne/Ar mixtures through a cylindrical tube are simulated in order to study the computational performance of the approach. It is shown that the required number of iterations and the computational times are significantly reduced at intermediate and large values of the rarefaction parameter by using the accelerated method. In the hydrodynamic limit, the flow rates of the components converge to the corresponding slip flow results. Flows driven by mole fraction gradient are also successfully simulated. Typical velocity and heat-flow profiles for pressure driven flow of He/Xe mixture are shown and commented on.  相似文献   

6.
Pressure-driven gas and liquid flows through microchannels with cavities have been studied using both experimental measurements and numerical computations. Several microchannels with cavities varying in shape, number and dimensions have been fabricated. One set of microdevices, integrated with sensors on a silicon wafer, is used for flow rate and pressure distribution measurements in gas flows. Another set of microdevices, fabricated using glass-to-silicon wafer bonding, is utilized for visualization of liquid flow patterns. The cavity effect on the flow in the microchannel is found to be very small, with the mass flow rate increasing slightly with increasing number of cavities. The flow pattern in the cavity depends on two control parameters; it is fully attached only if both the reduced Reynolds number and the cavity number are small. A flow regime map has been constructed, where the critical values for the transition from attached to separated flow are determined. The numerical computations reveal another control parameter, the cavity aspect ratio. The flow in the cavity is similar only if all three control parameters are the same. Finally, the vorticity distribution and related circulation in the cavity are analyzed. [1546].  相似文献   

7.
A method is presented to calculate the steady flows of rarefied gaseous mixtures in networks of long channels. The approach is based on the kinetic level. First, the McCormack linearized kinetic model is solved to obtain the local flow properties in the channels in a wide range of gaseous rarefaction and mole fraction. Second, the global flow properties including the flow rates and the distribution of the pressure and the mole fraction are deduced. An integral equation is introduced in order to determine the flow rates as functions of the differences of the partial pressures between the two ends of each channel. The conservation of mass at the nodes of the network results into a system of linear algebraic equations. The overall mathematical problem is solved iteratively. Pressure driven flows of He/Xe and He/Ar through an example network of circular tubes are calculated at intermediate values of the gaseous rarefaction. The results of the flow rates and the pressures and the mole fractions at the nodes in the whole system and the representative distributions of the pressure and the mole fraction along the channels are presented and commented on.  相似文献   

8.
This paper presents experimental and numerical results of mixed electroosmotic and pressure driven flows in a trapezoidal shaped microchannel. A micro particle image velocimetry (μPIV) technique is utilized to acquire velocity profiles across the microchannel for pressure, electroosmotic and mixed electroosmotic-pressure driven flows. In mixed flow studies, both favorable and adverse pressure gradient cases are considered. Flow results obtained from the μPIV technique are compared with 3D numerical predictions, and an excellent agreement is obtained between them. In the numerical technique, the electric double layer is not resolved to avoid expensive computation, rather a slip velocity is assigned at the channel surface based on the electric field and electroosmotic mobility. This study shows that a trapezoidal microchannel provides a tapered-cosine velocity profile if there is any pressure gradient in the flow direction. This result is significantly different from that observed in rectangular microchannels. Our experimental results verify that velocity distribution in mixed flow can be decomposed into pressure and electroosmotic driven components.  相似文献   

9.
Incompressible and compressible flows through indispensable configurations such as rectangular microorifices entrenched in microchannels have been experimentally investigated. The current endeavor evaluates the effects of microorifice and microchannel size, estimates the discharge coefficients associated with both compressible and incompressible flows, examines the contraction coefficients, probes subsonic and supercritical gas flows, and explores the presence of any anomalous effects such as those reported for microchannels. The discharge coefficient in incompressible flow, using deionized (DI) water as the working fluid, rises and peaks at a critical Reynolds number, (200/spl les/Re/sub Crit//spl les/500). The reported range of the transitional Reynolds number compares favorably with the values observed in conventional scale studies and suggests the absence of any irregular scaling effects. Furthermore, nitrogen flows through various microorifices suggests that the constriction element rather than the microchannel area determines the flow rate. Additionally, the critical pressure ratio at choking is close to the isentropic value (0.47/spl les/(P/sub 2//P/sub 1/)/sub Crit//spl les/0.64) and no anomalous scale or slip effects have been observed. Unlike macroscale compressible flows through an orifice, the losses seem minimal and the discharge coefficients are close to unity. The geometry acts as a smooth converging-diverging nozzle and the mass flow rate trends appear similar to the data obtained in micronozzle flows.  相似文献   

10.
利用单个SnO2气体传感器在方波变化的温度条件下实现对敌百虫和乙酰甲胺磷及其混合气体的快速检测和识别.实验结果表面,SnO2气体传感器在温度范围为250~300℃、温度变化频率为20MHz的工作条件下对敌百虫和乙酰甲胺磷及其混合气体表现出高的灵敏度和清晰的动态响应特征.通过快速傅立叶变换(FFT)实现对敌百虫和乙酰甲胺磷及其混合气体的定量分析.  相似文献   

11.
Owing to its kinetic nature and distinctive computational features, the lattice Boltzmann method for simulating rarefied gas flows has attracted significant research interest in recent years. In this article, a lattice Boltzmann (LB) model is presented to study microchannel flows in the transition flow regime, which have gained much attention because of fundamental scientific issues and technological applications in various micro-electro-mechanical system (MEMS) devices. In the model, a Bosanquet-type effective viscosity is used to account for the rarefaction effect on gas viscosity. To match the introduced effective viscosity and to gain an accurate simulation, a modified second-order slip boundary condition with a new set of slip coefficients is proposed. Numerical investigations demonstrate that the results, including the velocity profile, the non-linear pressure distribution along the channel, and the mass flow rate, are in good agreement with the solution of the linearized Boltzmann equation, the direct simulation Monte Carlo (DSMC) results, and the experimental results over a broad range of Knudsen numbers. It is shown that taking the rarefaction effect on gas viscosity into consideration and employing an appropriate slip boundary condition can lead to a significant improvement in the modeling of rarefied gas flows with moderate Knudsen numbers in the transition flow regime.  相似文献   

12.
This paper discusses a new computational scheme based on functional networks and applies it to the problem of classification and quantification of gas species in a mixture. A generalized functional network as a new classifier is proposed to improve the potentialities of the standard functional network classifier. Both methodology and learning algorithm are derived. The performance of this new classifier is examined by using experimental applications. A comparative study with the most common classification algorithms is carried out by showing the high‐quality performance of the proposed classifier. The classifier interacts with some quantifiers, again based on functional networks and finite differences. The scheme of the quantifiers was previously proposed for single gas exposure applications and is here extended to the multigas case. Numerical results show that our approach behaves quite satisfactorily.  相似文献   

13.
Acoustically generated flowfields in flexural plate wave sensors filled with a Newtonian liquid (water) are considered. A computational model based on compressible flow is developed for the sensor with a moving wall for pumping and mixing applications in microchannels. For the compressible flow formulation, an isothermal equation of state for water is employed. The velocity and pressure profiles for different parameters including flexural wall frequency, channel height, amplitude of the wave and wave length are investigated for four microchannel height/length geometries. It is found that the flowfield becomes pseudo-steady after sufficient number of flexural cycles. Both instantaneous and time averaged results show that an evanescent wave is generated in the microchannel. The predicted flows generated by the FPWs are compared with results available in the literature. The proposed device can be exploited to integrate micropumps with complex microfluidic chips improving the portability of micro-total-analysis systems.  相似文献   

14.
Flows in microchannels were successfully predicted, in the past, both analytically and numerically, employing the extended Navier–Stokes equations (ENSE). In ENSE, the self-diffusion transport of mass, together with the resulting momentum and heat transport, is taken into account properly and the same is omitted in the classical Navier–Stokes equations. The ENSE have been employed here to numerically predict backward-facing step flows in microchannels, and the predictions are summarized in this paper. The results obtained by employing ENSE are compared with the available literature data computed by both direct simulation Monte Carlo and slip-velocity-based simulations. The good agreement of the present results with those given in the literature evidently points out that the ENSE can be applied to gas flows through complex microchannel geometries.  相似文献   

15.
In the present study, the characteristics of supersonic flows in micronozzles are experimentally and computationally investigated for Reynolds numbers ranging from 618 to 5560. In the experiments, the flows are created in a rectangular contoured nozzle whose heights at its throat and exit are 286 and 500 μm, respectively. The number-density distribution along the nozzle centerline is measured using the laser-induced fluorescence technique under an underexpanded condition for each Reynolds number. The experimental results reveal that the underexpanded flow expands along the streamwise direction in a range where the cross-sectional area of the nozzle is constant although the flow in such a range has been believed to be compressed owing to friction. The results also reveal that the unexpected range where the flow expands extends with a decrease in Reynolds number. In the computations, the Navier–Stokes equations are solved numerically. The computational results agree very well with the experimental results; i.e., the computational code used in the present study is validated by the experiments. By using the computational results, the reason for the appearance of the phenomena peculiar to supersonic micronozzle flows is discussed. As a result, it is found that information about the back pressure under which the flow is underexpanded can reach into the inside of a micronozzle. Such a property induces the unexpected phenomena observed in the experiments.  相似文献   

16.
Electroosmotic flow control in complex microgeometries   总被引:4,自引:0,他引:4  
Numerical simulation results for pure electroosmotic and combined electroosmotic/pressure driven Stokes flows are presented in the cross-flow and Y-split junctions. The numerical algorithm is based on a mixed structured/unstructured spectral element formulation, which results in high-order accurate resolution of thin electric double layers with discretization flexibility for complex engineering geometries. The results for pure electroosmotic flows in cross-flow junctions under multiple electric fields show similarities between the electric and velocity fields. The combined electroosmotic/pressure driven flows are also simulated by regulating the flowrate in different branches of the cross-flow junctions. Flow control in the Stokes flow regime is shown to have linear dependence on the magnitude of the externally applied electric field, both for pure electroosmotic and combined flows. This linear behavior enables utilization of electroosmotic forces as nonmechanical means of flow control for microfluidic applications  相似文献   

17.
We present the development of an experimentally validated computational fluid dynamics model for liquid micro jets. Such jets are produced by focusing hydrodynamic momentum from a co-flowing sheath of gas on a liquid stream in a nozzle. The numerical model based on laminar two-phase, Newtonian, compressible Navier–Stokes equations is solved with finite volume method, where the phase interface is treated by the volume of fluid approach. A mixture model of the two-phase system is solved in axisymmetry using?~?300,000 finite volumes, while ensuring mesh independence with the finite volumes of the size 0.25 µm in the vicinity of the jet and drops. The numerical model is evaluated by comparing jet diameters and jet lengths obtained experimentally and from scaling analysis. They are not affected by the strong temperature and viscosity changes in the focusing gas while expanding at nozzle outlet. A range of gas and liquid-operating parameters is investigated numerically to understand their influence on the jet performance. The study is performed for gas and liquid Reynolds numbers in the range 17–1222 and 110–215, and Weber numbers in the range 3–320, respectively. A reasonably good agreement between experimental and scaling results is found for the range of operating parameters never tackled before. This study provides a basis for further computational designs as well as adjustments of the operating conditions for specific liquids and gases.  相似文献   

18.
We report theoretical and experimental investigations of flow through compliant microchannels in which one of the walls is a thin PDMS membrane. A theoretical model is derived that provides an insight into the physics of the coupled fluid–structure interaction. For a fixed channel size, flow rate and fluid viscosity, a compliance parameter \(f_{\text{p}}\) is identified, which controls the pressure–flow characteristics. The pressure and deflection profiles and pressure–flow characteristics of the compliant microchannels are predicted using the model and compared with experimental data, which show good agreement. The pressure–flow characteristics of the compliant microchannel are compared with that obtained for an identical conventional (rigid) microchannel. For a fixed channel size and flow rate, the effect of fluid viscosity and compliance parameter \(f_{\text{p}}\) on the pressure drop is predicted using the theoretical model, which successfully confront experimental data. The pressure–flow characteristics of a non-Newtonian fluid (0.1 % polyethylene oxide solution) through the compliant and conventional (rigid) microchannels are experimentally measured and compared. The results reveal that for a given change in the flow rate, the corresponding modification in the viscosity due to the shear thinning effect determines the change in the pressure drop in such microchannels.  相似文献   

19.
This paper reports the experimental and numerical analysis of time-dependent rarefied gas flows through a long metallic micro-tube. The experimental methodology was conceived on the basis of the constant volume technique and adapted to measure the evolution with time of a transient mass flow rate through a micro-tube. Furthermore, the characteristic time of each experiment, extracted from the pressure measurements in each reservoir, offered a clear indication on the dynamics of the transient flow as a function of the gas molecular mass and its rarefaction level. The measured pressure evolution with time at the inlet and outlet of the micro-tube was compared to numerical results obtained with the BGK linearized kinetic equation model. Finally, we present an original methodology to extract stationary mass flow rates by using the tube conductance, which can be associated with the characteristic time of the experiment, measured for different mean pressures between two tanks. The results were obtained in a wide range of rarefaction conditions for nitrogen (\(N_2\)). A brief comparison is offered with respect to R134a (CH2FCF3), too, a heavy polyatomic gas which is typically used in the refrigeration industry.  相似文献   

20.
一种利用单个SnO2 气体传感器检测农药残留的新方法   总被引:2,自引:1,他引:2  
研究了一种在环境气氛中快速检测和识别农药残留(敌百虫和乙酰甲胺磷)的新方法,即动态检测方法。这种方法是利用单个SnO2气体传感器在方波变化的温度下完成对敌百虫和乙酰甲胺磷及其混合气体的定性分析。实验结果表明,SnO2气体传感器在温度范围为250~300℃、温度变化频率为20MHz的工作条件下对敌百虫和乙酰甲胺磷及其混合气体表现出高的灵敏度和清晰的动态特征响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号