首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter's unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures.  相似文献   

2.
We have previously developed 2-D array transducers for many real-time volumetric imaging applications. These applications include transducers operating up to 7 MHz for transthoracic imaging, up to 15 MHz for intracardiac echocardiography (ICE), 5 MHz for transesophageal echocardiography (TEE) and intracranial imaging, and 7 MHz for laparoscopic ultrasound imaging (LUS). Now we have developed a new generation of miniature ring-array transducers integrated into the catheter deployment kits of interventional devices to enable real-time 3-D ultrasound scanning for improved guidance of minimally invasive procedures. We have constructed 3 new ring transducers. The first consists of 54 elements operating at 5 MHz. Typical measured transducer element bandwidth was 25%, and the 50 Ohm round trip insertion loss was -65 dB. Average nearest neighbor cross talk was -23.8 dB. The second is a prototype 108-element transducer operating at 5 MHz. The third is a prototype 108-element ring array with a transducer center frequency of 8.9 MHz and a -6 dB bandwidth of 25%. All transducers were integrated with an 8.5 French catheter sheath of a Cook Medical, Inc. vena cava filter deployment device.  相似文献   

3.
A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.  相似文献   

4.
A 64-element, high efficiency, ceramic piezoelectric array transducer operating at 20 MHz has been constructed for ultrasonic intraluminal imaging. The array is mounted on the surface of a 1.2 mm diameter catheter appropriate for coronary artery applications. Integrated into the catheter tip is a custom analog chip set permitting complete data capture from the array. That is, on each firing any combination of array elements can be selected independently as transmitter or receiver. Using data acquired in this way, a complete phased array aperture (i.e., independent transmit and receive apertures) can be synthesized. Reconstruction hardware based on a custom application specific integrated circuit (ASIC) has been designed and built to produce real-time images. Beam forming coefficients are derived using an optimal filtering approach accounting for the circular geometry of the array. Simulated and measured beam patterns for this system are compared. In addition, images of coronary anatomy acquired with the real-time system are displayed demonstrating the marked image quality improvement compared to previous synthetic aperture intraluminal systems  相似文献   

5.
In this study, a 64-element, 1.15-mm diameter annular-ring capacitive micromachined ultrasonic transducer (CMUT) array was characterized and used for forward-looking intravascular ultrasound (IVUS) imaging tests. The array was manufactured using low-temperature processes suitable for CMOS electronics integration on a single chip. The measured radiation pattern of a 43 X 140-microm2 array element depicts a 40 degrees view angle for forward-looking imaging around a 15-MHz center frequency in agreement with theoretical models. Pulse-echo measurements show a -10-dB fractional bandwidth of 104% around 17 MHz for wire targets 2.5 mm away from the array in vegetable oil. For imaging and SNR measurements, RF A-scan data sets from various targets were collected using an interconnect scheme forming a 32-element array configuration. An experimental point spread function was obtained and compared with simulated and theoretical array responses, showing good agreement. Therefore, this study demonstrates that annular-ring CMUT arrays fabricated with CMOS-compatible processes are capable of forward-looking IVUS imaging, and the developed modeling tools can be used to design improved IVUS imaging arrays.  相似文献   

6.
A model using finite-element analysis (FEA) has been developed to calculate the temperature rise in tissue from intracardiac ultrasound ablation catheters and to predict if this temperature rise is adequate for producing a lesion in the tissue. In the model, acoustic fields are simulated with Field II, and heat transfer is modeled with an FEA program. To validate the model, we compare its results to experimental results from an integrated, real-time three-dimensional (3-D) ultrasound imaging and ultrasound ablation catheter. The ultrasound ablation transducer is a ring transmitting at 10 MHz capable of producing an acoustic intensity of 16 W/cm2. It was used to ablate four lesions in tissue, and temperature rise as a function of time was monitored by embedded thermocouples. The average absolute difference between final temperatures predicted by FEA and those measured is 1.95 +/- 0.72 degrees C. Additionally, model and experimental lesion size are in good agreement. The model then is used to design a new ultrasound catheter with a 7.5 MHz linear phased array for ablation. Eight designs are modeled, and acoustic intensity, temperature rise, and ablation ability are compared.  相似文献   

7.
A catheter device with integrated ultrasound imaging array and ultrasound ablation transducer is introduced. This device has been designed for use in interventional cardiac procedures in which the cardiac anatomy is first imaged using real-time three-dimensional (3-D) ultrasound, then ablated to treat arrhythmias. The imaging array includes 112 elements operating at 5.4 MHz arranged in a 2-D matrix. Individual elements have a bandwidth of 21% and an insertion loss of 80 dB. The array has an azimuth resolution of 12 degrees and an elevation resolution of 8.7 degrees. The ablation transducer is a concentric piezoelectric transducer PZT-4 ring (outside diameter (O.D.), 4.5 mm, inside diameter (I.D.), 3.1 mm) operating at 10 MHz that surrounds the imaging array. It can produce a spatial-peak, temporal-average intensity up to 16 W/cm2. The entire device fits into a 9 Fr lumen with a 14 Fr tip to accommodate the ablation ring. With this device we have imaged, in realtime 3-D, a variety of targets including wire phantoms, fixed sheep hearts, and fresh bovine tissue. The ablation ring has been used to heat tissue-mimicking rubber 14 degrees C, as well as create lesions in fresh bovine tissue.  相似文献   

8.
A maximum processing temperature of 250/spl deg/C is used to fabricate capacitive micromachined ultrasonic transducers (CMUTs) on silicon and quartz substrates for immersion applications. Fabrication on silicon provides a means for electronics integration via post-complementary metal oxide semiconductor (CMOS) processing without sacrificing device performance. Fabrication on quartz reduces parasitic capacitance and allows the use of optical displacement detection methods for CMUTs. The simple, low-temperature process uses metals both as the sacrificial layer for improved dimensional control, and as the bottom electrode for good electrical conductivity and optical reflectivity. This, combined with local sealing of the vacuum cavity by plasma-enhanced chemical-vapor deposition of silicon nitride, provides excellent control of lateral and vertical dimensions of the CMUTs for optimal device performance. In this paper, the fabrication process is described in detail, including process recipes and material characterization results. The CMUTs fabricated for intravascular ultrasound (IVUS) imaging in the 10-20 MHz range and interdigital CMUTs for microfluidic applications in the 5-20 MHz range are presented as device examples. Intra-array and wafer-to-wafer process uniformity is evaluated via electrical impedance measurements on 64-element ring annular IVUS imaging arrays fabricated on silicon and quartz wafers. The resonance frequency in air and collapse voltage variations are measured to be within 1% and 5%, respectively, for both cases. Acoustic pressure and pulse echo measurements also have been performed on 128 /spl mu/m/spl times/32 /spl mu/m IVUS array elements in water, which reveal a performance suitable for forward-looking IVUS imaging at about 16 MHz.  相似文献   

9.
Volumetric ultrasound imaging using 2-D CMUT arrays   总被引:5,自引:0,他引:5  
Recently, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a candidate to overcome the difficulties in the realization of 2-D arrays for real-time 3-D imaging. In this paper, we present the first volumetric images obtained using a 2-D CMUT array. We have fabricated a 128 x 128-element 2-D CMUT array with through-wafer via interconnects and a 420-microm element pitch. As an experimental prototype, a 32 x 64-element portion of the 128 x 128-element array was diced and flip-chip bonded onto a glass fanout chip. This chip provides individual leads from a central 16 x 16-element portion of the array to surrounding bondpads. An 8 x 16-element portion of the array was used in the experiments along with a 128-channel data acquisition system. For imaging phantoms, we used a 2.37-mm diameter steel sphere located 10 mm from the array center and two 12-mm-thick Plexiglas plates located 20 mm and 60 mm from the array. A 4 x 4 group of elements in the middle of the 8 x 16-element array was used in transmit, and the remaining elements were used to receive the echo signals. The echo signal obtained from the spherical target presented a frequency spectrum centered at 4.37 MHz with a 100% fractional bandwidth, whereas the frequency spectrum for the echo signal from the parallel plate phantom was centered at 3.44 MHz with a 91% fractional bandwidth. The images were reconstructed by using RF beamforming and synthetic phased array approaches and visualized by surface rendering and multiplanar slicing techniques. The image of the spherical target has been used to approximate the point spread function of the system and is compared with theoretical expectations. This study experimentally demonstrates that 2-D CMUT arrays can be fabricated with high yield using silicon IC-fabrication processes, individual electrical connections can be provided using through-wafer vias, and flip-chip bonding can be used to integrate these dense 2-D arrays with electronic circuits for practical 3-D imaging applications.  相似文献   

10.
Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.  相似文献   

11.
Atrial fibrillation (AF) affects 1% of the population and results in a cost of 2.8 billion dollars from hospitalizations alone. Treatments that electrically isolate portions of the atria are clinically effective in curing AF. However, such minimally invasive catheter treatments face difficulties in mechanically positioning the catheter tip and visualizing the anatomy of the region. We propose a noncontact, intracardiac transducer that can ablate tissue and provide rudimentary imaging to guide therapy. Our design consists of a high-power, 20 mm by 2 mm, 128-element, transducer array placed on the side of 7-French catheter. The transducer will be used in imaging mode to locate the atrial wall; then, by focusing at that location, a lesion can be formed. Imaging of previously formed lesions could potentially guide placement of subsequent lesions. Successive rotations of the catheter will potentially enable a contiguous circular lesion to be created around the pulmonary vein. The challenge of intracardiac-sized transducers is achieving high intensities (300-5000 W/cm2) needed to raise the temperature of the tissue above 43 degrees C. In this paper, we demonstrate the feasibility of an intracardiac-sized transducer for treatment of atrial fibrillation. In simulations and proof-of-concept experiments, we show a 37 degrees C temperature rise in the lesion location and demonstrate the possibility of lesion imaging.  相似文献   

12.
The design, fabrication, and characterization of a 112 channel, 5 MHz, two-dimensional (2-D) array transducer constructed on a six layer flexible polyimide interconnect circuit is described. The transducer was mounted in a 7 Fr (2.33 mm outside diameter) catheter for use in real-time intracardiac volumetric imaging. Two transducers were constructed: one with a single silver epoxy matching layer and the other without a matching layer. The center frequency and -6 dB fractional bandwidth of the transducer with a matching layer were 4.9 MHz and 31%, respectively. The 50 omega pitch-catch insertion loss was 80 dB, and the typical interelement crosstalk was -30 dB. The final element yield was greater than 97% for both transducers. The transducers were used to acquire real-time, 3-D images in an in vivo sheep model. We present in vivo images of cardiac anatomy obtained from within the coronary sinus, including the left and right atria, aorta, coronary arteries, and pulmonary veins. We also present images showing the manipulation of a separate electrophysiological catheter into the coronary sinus.  相似文献   

13.
Piezoelectric materials have dominated the ultrasonic transducer technology. Recently, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as an alternative technology offering advantages such as wide bandwidth, ease of fabricating large arrays, and potential for integration with electronics. The aim of this paper is to demonstrate the viability of CMUTs for ultrasound imaging. We present the first pulse-echo phased array B-scan sector images using a 128-element, one-dimensional (1-D) linear CMUT array. We fabricated 64- and 128-element 1-D CMUT arrays with 100% yield and uniform element response across the arrays. These arrays have been operated in immersion with no failure or degradation in performance over the time. For imaging experiments, we built a resolution test phantom roughly mimicking the attenuation properties of soft tissue. We used a PC-based experimental system, including custom-designed electronic circuits to acquire the complete set of 128 x 128 RF A-scans from all transmit-receive element combinations. We obtained the pulse-echo frequency response by analyzing the echo signals from wire targets. These echo signals presented an 80% fractional bandwidth around 3 MHz, including the effect of attenuation in the propagating medium. We reconstructed the B-scan images with a sector angle of 90 degrees and an image depth of 210 mm through offline processing by using RF beamforming and synthetic phased array approaches. The measured 6-dB lateral and axial resolutions at 135 mm depth were 0.0144 radians and 0.3 mm, respectively. The electronic noise floor of the image was more than 50 dB below the maximum mainlobe magnitude. We also performed preliminary investigations on the effects of crosstalk among array elements on the image quality. In the near field, some artifacts were observable extending out from the array to a depth of 2 cm. A tail also was observed in the point spread function (PSF) in the axial direction, indicating the existence of crosstalk. The relative amplitude of this tail with respect to the mainlobe was less than -20 dB.  相似文献   

14.
Multi-element synthetic aperture imaging methods suitable for applications with severe cost and size limitations are explored. Array apertures are synthesized using an active multi-element receive subaperture and a multi-element transmit subaperture defocused to emulate a single-element spatial response with high acoustic power. Echo signals are recorded independently by individual elements of the receive subaperture. Each method uses different spatial frequencies and acquisition strategies for imaging, and therefore different sets of active transmit/receive element combinations. Following acquisition, image points are reconstructed using the complete data set with full dynamic focus on both transmit and receive. Various factors affecting image quality have been evaluated and compared to conventional imagers through measurements with a 3.5 MHz, 128-element transducer array on different gel phantoms. Multielement synthetic aperture methods achieve higher electronic signal to noise ratio and better contrast resolution than conventional synthetic aperture techniques, approaching conventional phased array performance  相似文献   

15.
Forward-viewing CMUT arrays for medical imaging   总被引:3,自引:0,他引:3  
This paper reports the design and testing of forward-viewing annular arrays fabricated using capacitive micromachined ultrasonic transducer (CMUT) technology. Recent research studies have shown that CMUTs have broad frequency bandwidth and high-transduction efficiency. One- and two-dimensional CMUT arrays of various sizes already have been fabricated, and their viability for medical imaging applications has been demonstrated. We fabricated 64-element, forward-viewing annular arrays using the standard CMUT fabrication process and carried out experiments to measure the operating frequency, bandwidth, and transmit/receive efficiency of the array elements. The annular array elements, designed for imaging applications in the 20 MHz range, had a resonance frequency of 13.5 MHz in air. The immersion pulse-echo data collected from a plane reflector showed that the devices operate in the 5-26 MHz range with a fractional bandwidth of 135%. The output pressure at the surface of the transducer was measured to be 24 kPa/V. These values translate into a dynamic range of 131.5 dB for 1-V excitation in 1-Hz bandwidth with a commercial low noise receiving circuitry. The designed, forward-viewing annular CMUT array is suitable for mounting on the front surface of a cylindrical catheter probe and can provide Doppler information for measurement of blood flow and guiding information for navigation through blood vessels in intravascular ultrasound imaging.  相似文献   

16.
This paper describes a unique crossed electrode array for real-time volume ultrasound imaging. By placing orthogonal linear array electrode patterns on the opposite sides of a hemispherically shaped composite transducer substrate, a 2D array can be fabricated using a small fraction of the elements required for a traditional 2D array. The performance of the array is investigated using a computer simulation of the radiation pattern. We show that by using a 288-element crossed electrode pattern it is possible to collect large field of view volume images (60deg times 60degsector) at real-time frame rates (>20 volume images/s), with image contrast and resolution comparable to what can be obtained using a conventional 128-element linear phased array.  相似文献   

17.
Recent papers have shown that focused ultrasound therapy may be feasible in the brain through an intact human skull by using phased arrays to correct the phase distortion induced by the skull bone. The hypothesis of this study is that the required phase shifts for the phased array can be calculated from the skull shape and thickness provided by modern imaging techniques. The shape and thickness of a piece of human skull was traced from the serial images and used in a theoretical model to calculate the phase distribution for a phased array. A 76-element phased array was manufactured and used in the tests. The piece of skull and the transducer array were positioned in a waterbath, and the ultrasound field distributions were mapped with and without the phase correction. The image-derived phase correction produced a sharp focus through the skull. These results showed that ultrasound brain therapy may be executed completely noninvasively through an intact skull by using a phased array and the skull thickness information derived from MRI scans.  相似文献   

18.
An integrated balloon ultrasound catheter prototype was designed to image from inside the balloon for real-time guidance during stent deployment. It was fabricated using a semicompliant balloon material (polyethylene) and a 20 MHz, 64-element circumferential ultrasound array. A commercial stent, nominally 4.4 mm in diameter and 12 mm in length, was used for a phantom study and placed along the length of the integrated balloon ultrasound catheter. A rubber phantom was created with an elastic modulus of 175 kPa with a 4.36 mm diameter lumen. Real-time balloon pressure measurements were recorded using a digital pressure sensor, and real-time radio-frequency (RF) data were captured as the balloon was inflated. The slope of the area-pressure ratio (APR) was compared to a reference measure of the balloon and stent expanded in water to determine a measure for optimal stent deployment. The results clearly indicate stent deployment at 11.1 atm using this metric. The APR slope could serve as quantitative feedback parameter for guiding stent deployment to reduce arterial injury and subsequent restenosis. After the stent deployment experiment, RF data were captured as the balloon catheter was moved along the length of the stent in pullback mode to confirm successful stent deployment. Ultimately, an integrated balloon ultrasound catheter could serve as a single catheter intervention device by providing real-time intravascular ultrasound (IVUS) imaging and quantitative feedback during stent deployment.  相似文献   

19.
An integrated compliant balloon ultrasound catheter was developed to allow greater deformations in strain imaging with intravascular ultrasound. A 64-element circumferential array was placed inside a compliant silicone balloon catheter to capture real-time, phase-sensitive radio frequency (RF) data during deformation experiments. Strains over 40% could be applied to normal arterial wall tissue with intracatheter pressures as low as 200 kPa (2 atm). Strain images of a hard-soft rubber phantom, thrombus, and fibrotic plaque were produced using the integrated balloon ultrasound catheter. Results show that this catheter can apply large deformations at low pressures and image various vascular pathologies ex vivo. Potentially, it can serve as a multifunctional, intravascular therapeutic device to guide angioplasty and stent deployment.  相似文献   

20.
Ultrasound phased arrays offer several advantages over single focused transducer technology, enabling electronically programmable synthesis of focal size and shape, as well as position. While phased arrays have been employed for medical diagnostic and therapeutic (hyperthermia) applications, there remain fundamental problems associated with their use for surgery. These problems stem largely from the small size of each array element dictated by the wavelength employed at surgical application frequencies (2-4 MHz), the array aperture size required for the desired focal characteristics, and the number of array elements and electronic drive channels required to provide RF energy to the entire array. The present work involves the theoretical and experimental examination of novel ultrasound phased arrays consisting of array elements larger than one wavelength, minimizing the number of elements in an aperture through a combination of geometric focusing, directive beams, and sparse random placement of array elements, for tissue ablation applications. A hexagonally packed array consisting of 108 8-mm-diameter circular elements mounted on a spherical shell was modeled theoretically and a prototype array was constructed to examine the feasibility of sparse random array configurations for focal surgery. A randomly selected subset of elements of the prototype test array (64 of 108 available channels) was driven at 2.1 MHz with a 64-channel digitally controlled RF drive system. The performance of the prototype array was evaluated by comparing field data obtained from theoretical modeling to that obtained experimentally via hydrophone scanning. The results of that comparison, along with total acoustic power measurements, suggest that the use of sparse random phased arrays for focal surgery is feasible, and that the nature of array packing is an important determinant to observed performance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号