共查询到20条相似文献,搜索用时 0 毫秒
1.
Stephens DN Cannata J Liu R Zhao JZ Shung KK Nguyen H Chia R Dentinger A Wildes D Thomenius KE Mahajan A Shivkumar K Kim K O'Donnell M Sahn D 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2008,55(3):602-618
A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter's unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. 相似文献
2.
Hsu SJ Fahey BJ Dumont DM Wolf PD Trahey GE 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2007,54(5):996-1009
Intracardiac echocardiography (ICE) has been demonstrated to be an effective imaging modality for the guidance of several cardiac procedures, including radiofrequency ablation (RFA). However, assessing lesion size during the ablation with conventional ultrasound has been limited, as the associated changes within the B-mode images often are subtle. Acoustic radiation force impulse (ARFI) imaging is a promising modality to monitor RFAs as it is capable of visualizing variations in local stiffnesses within the myocardium. We demonstrate ARFI imaging with an intracardiac probe that creates higher quality images of the developing lesion. We evaluated the performance of an ICE probe with ARFI imaging in monitoring RFAs. The intracardiac probe was used to create high contrast, high resolution ARFI images of a tissue-mimicking phantom containing stiffer spherical inclusions. The probe also was used to examine an excised segment of an ovine right ventricle with a RFA-created surface lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue. ARFI imaging with an intracardiac probe then was used to monitor cardiac ablations in vivo. RFAs were performed within the right atrium of an ovine heart, and B-mode and ARFI imaging with the intracardiac probe was used to monitor the developing lesions. Although there was little indication of a developing lesion within the B-mode images, the corresponding ARFI images displayed regions around the ablation site that displaced less. 相似文献
3.
Wong SH Scott GC Conolly SM Narayan G Liang DH 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2006,53(12):2394-2405
Atrial fibrillation (AF) affects 1% of the population and results in a cost of 2.8 billion dollars from hospitalizations alone. Treatments that electrically isolate portions of the atria are clinically effective in curing AF. However, such minimally invasive catheter treatments face difficulties in mechanically positioning the catheter tip and visualizing the anatomy of the region. We propose a noncontact, intracardiac transducer that can ablate tissue and provide rudimentary imaging to guide therapy. Our design consists of a high-power, 20 mm by 2 mm, 128-element, transducer array placed on the side of 7-French catheter. The transducer will be used in imaging mode to locate the atrial wall; then, by focusing at that location, a lesion can be formed. Imaging of previously formed lesions could potentially guide placement of subsequent lesions. Successive rotations of the catheter will potentially enable a contiguous circular lesion to be created around the pulmonary vein. The challenge of intracardiac-sized transducers is achieving high intensities (300-5000 W/cm2) needed to raise the temperature of the tissue above 43 degrees C. In this paper, we demonstrate the feasibility of an intracardiac-sized transducer for treatment of atrial fibrillation. In simulations and proof-of-concept experiments, we show a 37 degrees C temperature rise in the lesion location and demonstrate the possibility of lesion imaging. 相似文献
4.
Hao X Bruce CJ Pislaru C Greenleaf JF 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2002,49(11):1530-1542
Myocardial changes caused by infarction/reperfusion (contraction band necrosis, hemorrhage, edema, etc.) may result in an increased scatterer density and a variation in scatterer arrangement. This paper, for the first time, models most of the scattering conditions resulting from the interaction of ultrasound and normal/reperfused infarcted myocardium using the homodyned K distribution. Furthermore, this method is used to characterize the change in scatterer density by calculating the effective scatterer number per resolution cell. The reliability and the effects of attenuation and scan conversion on effective scatterer number estimation are discussed. We used in vivo data acquired using high-frequency intracardiac ultrasound imaging (8.5 MHz) from the left and right ventricles of open-chest pigs in an acute infarction/reperfusion model. The results show that the homodyned K distribution describes the statistical distribution of backscattered signal from both normal and abnormal myocardium. A significant increase in scatterer density occurs in the infarcted region after reperfusion compared with the same region at baseline (normal myocardium prior to occlusion). The scatterer density of the normal region does not change significantly after reperfusion. We conclude that the homodyned K distribution may characterize normal and reperfused infarcted myocardium using high-frequency intracardiac ultrasound images. 相似文献
5.
Yeh DT Oralkan O Wygant IO O'Donnell M Khuri-Yakub BT 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2006,53(6):1202-1211
Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications. 相似文献
6.
Ali Z Abbasi AZ Zhang F Arosio P Lascialfari A Casula MF Wenk A Kreyling W Plapper R Seidel M Niessner R Knöll J Seubert A Parak WJ 《Analytical chemistry》2011,83(8):2877-2882
For imaging with different modalities, labels, which provide contrast for all modalities, are required. Colloidal nanoparticles composed out of an inorganic core and a polymer shell offer progress in this direction. Both, the core and the polymer shell, can be synthesized to be fluorescent, magnetic, or radioactive. When different cores are combined with different polymer shells, different types of particles for dual imaging can be obtained, as for example, fluorescent cores with radioactive polymer shells. Properties and perspectives of such nanoparticles for multimodal imaging are discussed. 相似文献
7.
Gentry KL Smith SW 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2004,51(7):800-808
A catheter device with integrated ultrasound imaging array and ultrasound ablation transducer is introduced. This device has been designed for use in interventional cardiac procedures in which the cardiac anatomy is first imaged using real-time three-dimensional (3-D) ultrasound, then ablated to treat arrhythmias. The imaging array includes 112 elements operating at 5.4 MHz arranged in a 2-D matrix. Individual elements have a bandwidth of 21% and an insertion loss of 80 dB. The array has an azimuth resolution of 12 degrees and an elevation resolution of 8.7 degrees. The ablation transducer is a concentric piezoelectric transducer PZT-4 ring (outside diameter (O.D.), 4.5 mm, inside diameter (I.D.), 3.1 mm) operating at 10 MHz that surrounds the imaging array. It can produce a spatial-peak, temporal-average intensity up to 16 W/cm2. The entire device fits into a 9 Fr lumen with a 14 Fr tip to accommodate the ablation ring. With this device we have imaged, in realtime 3-D, a variety of targets including wire phantoms, fixed sheep hearts, and fresh bovine tissue. The ablation ring has been used to heat tissue-mimicking rubber 14 degrees C, as well as create lesions in fresh bovine tissue. 相似文献
8.
This letter reports the design, fabrication, and testing of a multifunctional scanning probe array for nanoscale imaging and patterning. The probe array consists of multiple cantilever probes, with each probe being able to perform a dedicated function such as scanning probe lithography (e.g., dip pen nanolithography and scanning probe contact printing) or scanning probe microscopy (e.g., atomic force microscopy and lateral force microscopy). The bending states of each probe can be controlled by using an integrated thermal electric actuator so that it is possible to engage any individual probe(s) independently for writing or imaging purposes. The multifunctional probe array is therefore capable of performing a rich variety of operations with minimal chemical crosstalk and high registration accuracy. It will eliminate the need for probe chip exchanges and increase the operational efficiency. The probe tips in a given array may be made of different materials. Further, the tip and cantilever may be made of different materials for a given probe. In this work, we focus on the development of a probe array consisting of dip pen nanolithography probes, scanning probe contact printing probes (of various tip sizes), and scanning probe microscopy probes. 相似文献
9.
Kadour M.J. Noble J.A. 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2009,56(1):36-43
Good-quality elasticity imaging requires highly controlled compressions of the breast, which are often challenging to obtain with freehand, even by an experienced radiologist. This paper presents assisted-freehand ultrasound (AFUSON): a fusion of freehand and automated ultrasound systems designed to assisted elasticity imaging acquisition while remaining as flexible as freehand. In the form of a hand-held device, this semi-automatic solution delivers both increased acquisition precision and control. Compared with freehand acquisitions, it reduces out-of-plane motion decorrelation by one-half and lateral motion by one-third, increases within-scan repeatability by 50%, and does so across operators. 相似文献
10.
We review the operating principles of noncollinear acousto-optic tunable filters (AOTF's), emphasizing the use of two orthogonally polarized beams for narrow-band imaging. Spectral characterization and spectral broadening measurements of commercially available AOTF's agree with theoretical predictions and reveal difficulties associated with imaging noncollimated light. An AOTF imaging spectropolarimeter for ground-based astronomy that uses CCD's has been constructed at NASA Goddard Space Flight Center. It uses a TeO(2) noncollinear AOTF and a simple optical relay assembly to produce side-by-side orthogonally polarized spectral images. We summarize the instrument design and initial performance tests. We include sample spectral images acquired at the Goddard Geophysical and Astronomical Observatory. 相似文献
11.
Treece G.M. Lindop J.E. Gee A.H. Prager R.W. 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2009,56(11):2420-2436
Ultrasound strain imaging is becoming increasingly popular as a way to measure stiffness variation in soft tissue. Almost all techniques involve the estimation of a field of relative displacements between measurements of tissue undergoing different deformations. These estimates are often high resolution, but some form of smoothing is required to increase the precision, either by direct filtering or as part of the gradient estimation process. Such methods generate uniform resolution images, but strain quality typically varies considerably within each image, hence a trade-off is necessary between increasing precision in the low-quality regions and reducing resolution in the high-quality regions. We introduce a smoothing technique, developed from the nonparametric regression literature, which can avoid this trade-off by generating uniform precision images. In such an image, high resolution is retained in areas of high strain quality but sacrificed for the sake of increased precision in low-quality areas. We contrast the algorithm with other methods on simulated, phantom, and clinical data, for both 2-D and 3-D strain imaging. We also show how the technique can be efficiently implemented at real-time rates with realistic parameters on modest hardware. Uniform precision nonparametric regression promises to be a useful tool in ultrasound strain imaging. 相似文献
12.
We have constructed a near-real-time combined imager suitable for simultaneous ultrasound and near-infrared diffusive light imaging and coregistration. The imager consists of a combined hand-held probe and the associated electronics for data acquisition. A two-dimensional ultrasound array is deployed at the center of the combined probe, and 12 dual-wavelength laser source fibers (780 and 830 nm) and 8 optical detector fibers are deployed at the periphery. We have experimentally evaluated the effects of missing optical sources in the middle of the combined probe on the accuracy of the reconstructed optical absorption coefficient and assessed the improvements of a reconstructed absorption coefficient with the guidance of the coregistered ultrasound. The results have shown that, when the central ultrasound array area is in the neighborhood of 2 cm x 2 cm, which corresponds to the size of most commercial ultrasound transducers, the optical imaging is not affected. The results have also shown that the iterative inversion algorithm converges quickly with the guidance of a priori three-dimensional target distribution, and only one iteration is needed to reconstruct an accurate optical absorption coefficient. 相似文献
13.
Park S Aglyamov SR Scott WG Emelianov SY 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2007,54(5):987-995
In elasticity imaging, the ultrasound frames acquired during tissue deformation are analyzed to estimate the internal displacements and strains. If the deformation rate is high, high-frame-rate imaging techniques are required to avoid the severe decorrelation between the neighboring ultrasound images. In these high-frame-rate techniques, however, the broader and less focused ultrasound beam is transmitted and, hence, the image quality is degraded. We quantitatively compared strain images obtained using conventional and ultrafast ultrasound imaging methods. The performance of the elasticity imaging was evaluated using custom-designed, numerical simulations. Our results demonstrate that signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and spatial resolutions in displacement and strain images acquired using conventional and ultrafast ultrasound imaging are comparable. This study suggests that the high-frame-rate ultrasound imaging can be reliably used in elasticity imaging if frame rate is critical 相似文献
14.
We present a prototype of gated viewing laser imaging with compressive sensing (GVLICS). By a new framework named compressive sensing, it is possible for us to perform laser imaging using a single-pixel detector where the transverse spatial resolution is obtained. Moreover, combining compressive sensing with gated viewing, the three-dimensional (3D) scene can be reconstructed by the time-slicing technique. The simulations are accomplished to evaluate the characteristics of the proposed GVLICS prototype. Qualitative analysis of Lissajous-type eye-pattern figures indicates that the range accuracy of the reconstructed 3D images is affected by the sampling rate, the image's noise, and the complexity of the scenes. 相似文献
15.
Quantum dot bioconjugates for imaging, labelling and sensing 总被引:20,自引:0,他引:20
One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves. 相似文献
16.
In order to improve the sensitivity of ultrasound imaging, the contrast agents, a powerful non-invasive and real-time medical imaging technique, are used. However, air or N2 or perfluorocarbon only encapsulated microbubbles which are currently used have lower efficiency and short imaging time. So the novel contrast agents with a higher efficiency are required. To achieve this objective, the strategy that we have explored involves the use of superparamagnetic iron oxide (SPIO) Fe3O4 nanoparticles multilayer emulsion microbubbles. This multilayer structure consists of three layers. The core is poly-d, l-lactide (PLA) encapsulated N2 nanobubble with the SPIO nanoparticles forming oil-in-water (W/O) layer. The outermost is water-in-oil-in-water ((W/O)/W) emulsion layer with PVA solution. Herein we describe the synthesis and characterization of ultrasound imaging microstructure with an overall diameter of around 2μm-8μm. On the one hand, the stable gas encapsulated microstructure can provide a high scattering intensity resulting in high echogenicity, On the other hand, SPIO nanoparticles have shown the potential of high-resolution sonography. So the multiple emulsion microbubbles with SPIO can have double action to enhance the ultrasound imaging. Besides, because SPIO can also serve as magnetic resonance imaging (MRI) contrast agents, such microstructure may be useful for multimodality imaging studies in ultrasound imaging and MRI. 相似文献
17.
Computer model for harmonic ultrasound imaging 总被引:1,自引:0,他引:1
Li Y Zagzebski JA 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2000,47(4):1000-1013
Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. Here, the authors present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging. 相似文献
18.
Nilsen C.-I.C. Hafizovic I. 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2009,56(10):2187-2197
Applying the Capon adaptive beamformer in medical ultrasound imaging results in enhanced resolution by improving the interference-suppressing capabilities of the array. This improvement comes at the expense of an increased computational complexity. We have investigated the application of a beamspace adaptive beamformer for medical ultrasound imaging, which can be used to achieve reduced computational complexity with performance comparable to that of the Capon beamformer. The idea behind beamspace beamforming is that, instead of using the spatial statistics of the elements in the array to differentiate between signals and interference, we use the spatial statistics of a set of orthogonal beams, which are formed in different directions. This represents a shift from element space to beamspace. Because the majority of interference in medical ultrasound imaging is constrained to a limited spatial interval due to the focused transmit beam, this latter space can be reduced to a dimension that is lower than that of element space. We show, using simulations and experimental data, that this dimension can be selected as low as 3 while still achieving performance comparable to its element space counterpart. 相似文献
19.
Manes G Tortoli P Andreuccetti F Avitabile G Atzeni C 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》1988,35(1):14-21
An approach to dynamic focusing of ultrasound linear array scanners is presented, leading to the unique capability of implementing a focus that continuously tracks the return signal along the penetration depth. An electronically variable lens is obtained by a heterodyning process, in which the phases of echo signals at the array elements are equalized by mixing with suitable reference oscillations. These are generated by control of a single voltage-controlled oscillator, whose frequency is properly varied in synchronism with the delay of signal from different depths. The technique has been experimentally demonstrated by modifying the focusing processor of a conventional echographic linear scanner. Superior performances have been obtained with respect to fixed-focus operation mode. The image quality results are comparable with those of multizone-focus operation mode, in which the focus is varied over more transmit/receive cycles at the expense of lower frame rate. 相似文献
20.
Park S Aglyamov SR Emelianov SY 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2007,54(11):2246-2256
High-frame rate ultrasound imaging is necessary to track fast deformation in ultrasound elasticity imaging, but the image quality may be degraded. Previously, we investigated the performance of strain imaging using numerical models of conventional and ultrafast ultrasound imaging techniques. In this paper, we performed experimental studies to quantitatively evaluate the strain images and elasticity maps obtained using conventional and high frame rate ultrasound imaging methods. The experiments were carried out using point target and tissue mimicking phantoms. The experimental results were compared with the results of numerical simulation. Our experimental studies confirm that the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and axial/lateral resolution of the displacement and strain images acquired using high-frame rate ultrasound imaging are slightly lower but comparable with those obtained using conventional imaging. Furthermore, the quality of elasticity images also exhibits similar trends. Thus, high-frame rate ultrasound imaging can be used reliably for static elasticity imaging to capture the internal tissue motion if the frame rate is critical. 相似文献