首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用聚苯胺包覆法合成了具有核壳结构的纳米LiFePO_4/C复合材料。聚苯胺包覆层对限制先驱体FePO_4的粒径起着关键性的作用。反应热力学理论计算和实验结论都表明制备FePO_4/PANI最适宜的pH值约为5。FePO4/PANI复合物的粒径由苯胺添加量决定,当添加的苯胺与FePO_4摩尔比为0.44时,可以合成粒径约50 nm的FePO4/PANI复合物。经过碳热还原过程,FePO_4表面的聚苯胺层转化为LiFePO_4表面导电性良好的碳包覆层。采用优化工艺合成的LiFePO_4/C颗粒近似球体,粒径约为55 nm,碳包覆层厚度约为2 nm,0.2和1 C倍率下放电比容量约为136 mAh.g~(-1),在10、20、30和40 C倍率下放电比容量分别为118,103,94和87 mAh·g~(-1),高倍率下放电比容量和循环性能明显优于固相法合成的LiFePO_4材料。.  相似文献   

2.
依据电化学原理,提出改进液相共沉淀制备LiFePO_4前驱体的方法.以价廉稳定的Fe~(3+)化合物作铁源,在共沉淀的过程中不需要惰性气体保护,然后在较低温度下(550 ℃)于氮气气氛中焙烧得到橄榄石型LiFePO_4.研究烧结温度对产物性能的影响,550 ℃下烧结得到了电化学性能优良的纯相LiFePO_4.通过改进共沉淀制备掺铜的LiFePO_4正极材料,它具有153.10 mAh·g~(-1)的初始容量(0.1 C),比未掺杂的LiFePO_4提高了11%.经过30次循环后,容量降到140mAh·g~(-1).  相似文献   

3.
采用固相燃烧法在500℃反应1 h然后再650℃二次焙烧6 h,快速合成了Ni、Mg共掺杂的LiNi_(0.03)Mg_(0.10)Mn_(1.87)O_4正极材料。借助X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱仪(XPS)和电化学测试等对材料的结构、形貌、物相和电化学性能进行测试。结果表明:LiNi_(0.03)Mg_(0.10)Mn_(1.87)O_4正极材料为立方尖晶石型结构,颗粒尺寸在100~200nm之间,为多面体形貌。合成的LiNi_(0.03)Mg_(0.10)Mn_(1.87)O_4材料有良好的电化学性能,在1C时首次放电比容量为107.6 mAh·g~(-1),10 C首次放电比容量有68.7 mAh·g~(-1),在55℃、1 C首次放电比容量有103.7 mAh·g~(-1),CV和EIS测试得出该材料有较大的锂离子扩散系数1.038×10~(-11) cm~2·s~(-1)和较小的活化能32.69 kJ·mol~(-1),对循环1000次后的极片进行剖面分析,该材料的晶体结构和颗粒形貌基本没有变化,适量Ni、Mg共掺杂能够有效提高尖晶石型LiMn_2O_4在循环过程中的容量衰减和结构稳定性,抑制了Jahn-Teller效应。  相似文献   

4.
以硫代氨基脲为氮源,用高温退火法对碳纳米管实现氮掺杂,利用PEG对掺氮复合材料(NCNT/S)进行外包覆。采用X射线衍射仪(XRD),扫描电子显微镜(SEM),X射线光电子能谱仪(XPS)对复合材料进行了表征。结果表明高温退火使氮有效地掺入碳纳米管中,而碳纳米管仍保持原本征形貌。电化学测试表明:掺氮后复合电极首次放电比容量明显提高,达到882.5 mAh·g~(-1),90次循环过后具有89.46%的容量保持量,而PEG包覆使掺氮复合电极首次放电比容量提高至1109.7 mAh·g~(-1),经过90次循环放电比容量仍保持在995.2 mAh·g~(-1)。这说明掺氮和PEG包覆均能很好地改善复合材料的电化学性能。  相似文献   

5.
采用高温固相法合成了Cr~(3+)掺杂的LiNi_(0.5)Mn_(1.5)O_4正极材料,研究了掺杂量对材料物理性能和电化学性能的影响。利用XRD、SEM对材料的结构和形貌进行了表征。结果显示,样品具有棱边清晰的尖晶石形貌。讨论了不同Cr~(3+)掺杂量对LiCrxNi_(0.5-0.5x)Mn_(1.5-0.5x)O_4(x=0,0.05,0.1,0.15,0.2)正极材料性能的影响。充放电测试、循环伏安和交流阻抗测试结果表明:当Cr~(3+)的掺杂量为x=0.1时(LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4)正极材料的性能最好,0.1、0.5、1、2及5 C的首次放电比容量依次为131.54、126.84、121.28、116.49和96.82 mAh·g~(-1),1 C倍率下循环50次,容量保持率仍为96.5%。  相似文献   

6.
Zn^2+掺杂对锂离子电池正极材料LiFePO4性能的影响   总被引:3,自引:2,他引:1  
以Zn(NO4)2·6H2O为Zn源,蔗糖为C源,对LiFePO4进行了Fe位掺杂和包覆研究.用XRD、交流阻抗方法和恒流充放电研究了材料的结构和电化学性能.结果表明:包覆掺杂后的材料具有橄榄石型晶体结构.从LiFePO4、LiZn0.01Fe0.09PO4到LiZn0.01Fe0.99PO4/C其电荷转移阻抗逐渐减小,材料的可逆性能逐渐增强.掺杂后的材料初始容量和循环性能都得到明显的改善,在0.1C的倍率下,LiFePO4、LiZn0.01Fe0.99PO4和LiZn0.041Fe0.99PO4/C首次放电容量分别为93.1mAh·g-1、130.4mAh·g-1和159.2 mAh·g-1.放电倍率提高到0.5C时,LiZn0.01Fe0.99PO4/C首次放电容量仍有137.3 mAh·g-1,其后的70次循环容量衰减仅4.3%.  相似文献   

7.
采用溶胶-凝胶法制备出电化学性能优异的xLiFePO_4·yLi_3V_2(PO_4)_3/C复合正极材料。研究了复合比例对材料的组成、微观结构和电化学性能的影响。结果表明,当LiFePO_4和Li_3V_2(PO_4)_3的摩尔比为7:1,所得复合材料的颗粒尺寸在40~80nm之间,颗粒表面均匀地覆盖了一层无定形碳。在0.1C倍率下的首次放电容量为129.7mAh/g,充放电效率为96.0%;在1C、2C和5C倍率下,该材料的首次放电容量分别为104.6,89.3,71.6mAh/g,30次循环后的容量保持率为99.9%、95.1%和98.6%,表现出了良好的电化学稳定性。  相似文献   

8.
采用导电的Ti_3O_5作为外壳包覆纳米铝粉制备了Al@Ti_3O_5核壳结构材料,并将其作为负极材料应用到双离子电池(DIB)中。使用中间相碳微球(MCMB)作为正极材料,Al@Ti_3O_5作为负极材料制作Al@Ti_3O_5-MCMB双离子电池。结果表明,电池的放电平台可达4.5 V,在电流倍率0.5 C下(电流基于正极石墨的理论比容量计算,1 C=372 mAh·g~(-1))放电比容量达到130.6 mAh·g~(-1),比能量密度为278.8 Wh·kg~(-1)。并且在高倍率5 C下循环1000次过程中容量基本保持110 m Ah·g~(-1)不变,循环后容量保持率达到92.9%。  相似文献   

9.
以葡萄糖为主碳源,抗坏血酸(AA)为辅助碳源,采用固相法合成了倍率性能优良的碳包覆磷酸钒锂(LVP/C-AA)复合正极材料。通过X射线衍射(XRD)仪、扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱(Raman)、恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)测试表征了材料的物相、形貌、结构和电化学性能。结果表明,添加少量的抗坏血酸为辅助碳源对Li_3V_2(PO_4)_3晶体结构没有明显的影响,但能明显提高Li_3V_2(PO_4)的高倍率性能。LVP/C-AA在5 C时的首次放电比容量可达162.4 mAh·g~(-1),100次循环后容量保持率高达80.4%。  相似文献   

10.
采用水热法合成了LiFe_(1-x)V_xPO_4/C,粉体颗粒呈球形,直径约为300 nm,结果表明钒掺杂没有改变晶体结构,引入V显著提高了材料的电化学性能,其中LiFe_(0.95)V_(0.05)PO_4/C具有最好的倍率和循环性能,在1.0 C经100次循环后放电比容量仍为129.5 m h·g~(-1),容量保持率高达96.9%。循环伏安测试表明V掺杂提高了Li~+的扩散速率,结合水热法制备的颗粒尺寸小且均匀的优点,使得Li~+的扩散路径大大缩短,由此提高了材料的电化学性能。  相似文献   

11.
以FeSO4·7H2O、H3PO4、H2O2和尿素为原料,采用均匀沉淀法制备LiFePO4的前驱体FePO4·xH2O,研究表面活性剂PEG对前驱体FePO4·xH2O形貌的影响。并将获得的FePO4·xH2O与Li2CO3及葡萄糖混合后合成LiFePO4/C。利用XRD、SEM、循环伏安测试、电化学性能测试、交流阻抗测试等手段对LiFePO4/C进行表征。结果表明:当不添加表面活性剂PEG时,FePO4·xH2O颗粒呈球形,但团聚现象严重;添加PEG后,颗粒较分散,形貌为多面体,合成的LiFePO4/C在0.1C时的首次放电比容量为151.0 mA·h/g,倍率性能好,振实密度达1.44 g/cm3。  相似文献   

12.
Ti4+-mixed FePO4·xH2O precursor was prepared by co-precipitation method,with which Ti4+ cations were added in the process of preparing FePO4·xH2O to pursue an effective and homogenous doping way.Ti4+-doped LiFePO4 was prepared by an ambient-reduction and post-sintering method using the as-prepared precursor,Li2CO3 and oxalic acid as raw materials.The samples were characterized by scanning electron microscopy (SEM),X-ray diffractometry (XRD),electrochemical impedance spectroscopy (EIS),and electrochemical charge/discharge test.Effects of Ti4+-doping and sintering temperature on the physical and electrochemical performance of LiFePO4 powders were investigated.It is noted that Ti4+-doping can improve the electrochemical performance of LiFePO4 remarkably.The Ti4+-doped sample sintered at 600 ℃ delivers an initial discharge capacity of 150,130 and 125 mA·h/g with 0.1C,1C and 2C rates,respectively,without fading after 40 cycles.  相似文献   

13.
以FePO4为铁源、Li2CO3为锂源、聚丙烯为还原剂和碳源,采用一步固相法合成原位碳包覆磷酸亚铁锂(LiFePO4/C)复合材料,研究合成温度对材料LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜和拉曼光谱技术对合成产物的晶体结构、表面形貌和碳结构进行表征,通过电化学阻抗谱(EIS)和充放电测试对材料的电化学性能进行测试和分析。结果表明:在600~750℃温度范围内都可合成纯LiFePO4/C复合材料,随着合成温度的升高,材料颗粒尺寸和石墨化程度都将增大;600℃保温8h合成的材料颗粒尺寸为100~500nm,其1C放电比容量达到144.2mA·h/g,5C放电比容量达到119mA·h/g。  相似文献   

14.
Optimized synthesis technology of LiFePO4 for Li-ion battery   总被引:2,自引:1,他引:2  
The influence of factors of the carbon black content, sintering temperature, sintering time, molar ratio of Li to Fe, as well as the electrochemical properties of LiFePO4 for lithium ion battery were studied. The only technology was obtained by using range analysis through Latin orthogonal experiment of L4^4 (16). The results show that the optimization synthesis technology of LiFePO4 is content of 5% doping carbon, sintering temperature of 700℃,molar ratio of Li to Fe of 1.03 : 1 and sintering time of 16 h. The optimized cathode synthesis techniques can make LiFePO4 have good electrochemical properties.  相似文献   

15.
采用第一性原理平面波赝势方法计算研究了在LiFePO4的Li位、Fe位和Fe/Li位共掺杂金属原子对材料的电性能和局部结构稳定性的影响关系。结果表明:Li位掺杂(Li0.75Na0.25)FePO4比Fe位掺杂Li(Fe0.75Mn0.25)PO4表现出更好的电子电导性,而局部结构稳定性刚好相反。但是Fe/Li位共掺杂对电子电导性和局部结构稳定性具有双重优化作用,这可能是由Na-2p电子与Li-s电子相互作用引起的。同时,根据计算差分电荷密度关系可以发现共掺杂后会有大量其他原子电荷向Li原子周围偏移,从而改善材料的电子电导性能。  相似文献   

16.
用化学沉淀法制备了Mg^2+、Al^3+、Ti^4+、V^5+和Ni^2+掺杂的磷酸铁锂,用恒电流充放电方法测量掺杂LiFePO4的充放电性能,用x射线衍射和里特沃尔特方法表征了掺杂LiFePO4的晶体结构。研究表明,少量金属离子掺杂能有效地提高LiFePO4的大电流放电性能,其中Li1-xTixFePO4、Li1-xVxFePO4和Li1-xNixFePO4以2C速率充放电时,放电比容量在120mAh/g以上,循环20次后容量保持率在80%以上。主要原因是掺杂金属离子以固溶体形式存在,并占据锂的位置,改变了晶体中原子间距离和位置,引起晶胞收缩和Li-O原子间平均距离增加,形成了有利于锂离子脱嵌的结构。  相似文献   

17.
以FePO4、Li2CO3和葡萄糖为原料,用液氮急速淬火法制备单一橄榄石结构的锂离子电池正极材料LiFePO4/C。结果表明:淬火使得LiFePO4晶格中产生Li空位,有利于提高其电子导电性。淬火样品的一次颗粒细小(100~500 nm),无明显团聚,并形成多孔结构;该样品在1C、2C和4C倍率下的首次放电比容量分别为151.4、138.0和116.7 mA.h/g,循环100次后的容量保持率高达99.3%、98.6%和94.5%。  相似文献   

18.
以超声波辅助沉淀法合成的纳米级球形FePO4·2H2O为原料,采用碳热还原法制备了复合金属掺杂的LiFePO4/C复合材料。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试,循环伏安和交流阻抗测试表征了FePO4·2H2O和LiFePO4/C的物相、结构和电化学性能。结果表明,溶液浓度为0.1 mol/L时制备的FePO4·2H2O为分布均匀的纳米级球形颗粒。复合金属掺杂显著提高了LiFePO4的放电比容量,Ni和Nb复合掺杂的LiFePO4/C复合材料表现出了最佳的电化学性能,0.1 C倍率条件下首次放电容量158.8 mAh/g,1 C倍率下首次放电容量150.2 mAh/g,100次循环后容量保持率分别为98.30%和97.8%。Ni和Nb复合掺杂后提高了LiFePO4的锂离子扩散速率和电导率。  相似文献   

19.
以聚丙烯酸为碳源,用低温还原-插锂与聚合物高温分解相结合的方法制备LiFePO4/C复合正极材料;FePO4被还原插锂与含碳聚合物化学包覆同时进行,简化了制备工艺,降低了制备成本。经X射线粉末衍射(XRD)、扫描电镜(SEM)以及恒电流充/放电测试,研究了不同焙烧温度对合成产物的物相、晶胞参数、表面形貌及电化学性能的影响。研究发现,焙烧温度为600℃时,合成产物的0.1 C倍率放电具有最高的放电容量和最好的循环稳定性。在0.1 C下LiFePO4/C复合材料的首次放电容量高达141.3 mAh/g,库伦效率为98.0%,100次循环后,其容量保持率为108.3%。  相似文献   

20.
通过对原料二水磷酸铁的预包覆处理,合成碳包覆磷酸铁锂材料。采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对合成的磷酸铁锂材料结构和微观形貌进行表征,同时考察了其电化学性能。结果表明,对磷酸铁进行碳预包覆能有效提高最终合成产物的电化学性能,在对磷酸铁原料进行1.34%碳含量的包覆后,以此为原料合成磷酸铁锂材料,得到的磷酸铁锂材料含碳量为2.38%时,10C放电容量达到120.7mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号