首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, nanosized (<100 nm) aerosol particles with high mass concentrations for inhalation tests were generated by a spray-drying technique with combining Coulomb explosion and rapid evaporation of the droplets. Under typical spray-drying conditions, aerosol particles with average diameter of 50–150 nm were prepared from a suspension of NiO nanoparticles with a primary diameter of 15–30 nm. Under the Coulomb explosion method, the sprayed droplets were charged by being mixed with unipolar ions to break up the droplets, which resulted in the generation of smaller aerosol particles with diameters of 15–30 nm and high number concentrations. Under the rapid evaporation method, the droplets were heated immediately after being sprayed to avoid inertial impaction on the flow path due to shrinkage of the droplet, which increased the mass concentration of the aerosol particles. The combination of the Coulomb explosion and rapid evaporation of droplets resulted in the generation of aerosol particles with sizes less than 100 nm and mass concentrations greater than 1 mg/m3; these values are often necessary for inhalation tests. The aerosols generated under the combined method exhibited good long-term stability for inhalation tests. The techniques developed in this study were also applied to other metal oxide nanoparticle materials and to fibrous multiwalled carbon nanotubes.

Copyright 2014 American Association for Aerosol Research  相似文献   


2.
Presented is a laminar-flow, water-based condensation particle counter capable of particle detection near 1 nm. This instrument employs a three-stage, laminar-flow growth tube with a “moderator” stage that reduces the temperature and water content of the output flow without reducing the peak supersaturation, and makes feasible operation at the large temperature differences necessary for achieving high supersaturations. The instrument has an aerosol flow of 0.3 L/min, and does not use a filtered sheath flow. It is referred to as a “versatile” water condensation particle counter, or vWCPC, as operating temperatures can be adjusted in accordance with the cut-point desired. When operated with wall temperatures of ~2°C, >90°C, and ~22°C for the three stages, respectively, the vWCPC detects particles generated from a heated nichrome wire with a 50% efficiency cut-point near 1.6 nm mobility diameter. At these operating temperatures, it also detects 10–20% of large molecular ions formed from passing filtered ambient air through a bipolar ion source. Decreasing the temperature difference between the first two stages, with the first and second stages operated at 10 and 90°C, respectively, essentially eliminates the response to charger ions, and raises the 50% efficiency cut-point for the nichrome wire particles to 1.9 nm mobility diameter. The time response, as measured by rapid removal of an inlet filter, yields a characteristic time constant of 195 ms.

Copyright © 2017 American Association for Aerosol Research  相似文献   


3.
This work reports experimental results on the effects of temperature (25, 45, and 65°C at different relative humidity) on the scrubbing of charged submicron particles by means of cold (25°C) droplets charged with opposite polarity. The aim of the study is to experiment how the capture of particles is influenced by the simultaneous presence of electrostatic and phoretic forces related to the occurrence of thermal and water vapor gradients close to the droplet surface. This information plays an important role in the development of wet electrostatic scrubbing (WES), an emerging technology for submicron and ultrafine particle capture. Tests were performed in a lab-scale system in which the particle laden-gas was scrubbed by a train of identic droplets. Particles were charged by a corona source while droplets are generated by electrospraying. Experiments revealed that for particles larger than about 250–300 nm, there were higher removal efficiencies in nonisothermal conditions, with limited differences between 45 and 65°C tests. For particles finer than about 150 nm, we sometimes observed lower removal efficiencies for higher gas temperatures, probably due to the difficulties in controlling particle charging for these particles. The experiments were interpreted with a consolidated stochastic model that predicted successfully the data at isothermal conditions, but was less effective for tests at higher gas temperatures. In our opinion, this discrepancy relies on synergies among the fluid dynamic field induced by droplet evaporation/condensation, the phoretic and the electrostatic forces, which are not considered in the model.

Copyright © 2016 American Association for Aerosol Research  相似文献   


4.
A water-based condensational growth channel was developed for imaging mobility-separated particles within a parallel plate separation channel of the Fast Integrated Mobility Spectrometer (FIMS). Reported are initial tests of that system, in which the alcohol condenser of the FIMS was replaced by a water-based condensational growth channel. Tests with monodispersed sodium chloride aerosol verify that the water-condensational growth maintained the laminar flow, while providing sufficient growth for particle imaging. Particle positions mapped onto particle mobility, in accordance with theoretical expectations. Particles ranging in size from 12 nm to 100 nm were counted with the same efficiency as with a butanol-based ultrafine particle counter, once inlet and line losses were taken into account.

Copyright © 2017 American Association for Aerosol Research  相似文献   


5.
Heterogeneous nucleation of supersaturated n-butanol vapor on neutral silver particles of different size has been investigated at variable nucleation temperatures using a fast expansion chamber and a commercial continuous flow type condensation particle counter (CPC). In addition, the theoretical supersaturation profile was calculated for the commercial CPC in order to conflate the results with the measured onset saturation ratio of the expansion type size analyzing nuclei counter (SANC). A comparison of the experimental results of the SANC measurements with the Kelvin equation shows that the heterogeneous nucleation starts below the Kelvin curve. By introducing a correction factor for the Kelvin equation based on the SANC measurements, the theoretical detection efficiency for a laminar flow type CPC could be derived. It was the first time that a validation between theoretical saturation ratio profiles and measurements conducted with different methods to generate supersaturation was achieved. We made the observation that reducing the nucleation temperature generally leads to enhanced counting efficiencies. Consequently, the cutoff diameter of regular butanol CPCs can be significantly reduced by simply lowering the condenser temperature.

Copyright © 2019 The Authors. Published with license by Taylor & Francis Group, LLC  相似文献   


6.
Operation of transport vehicle brakes makes a significant contribution to airborne particulate matter in urban areas, which is subject of numerous studies due to the environmental concerns. We investigated the presence and number fractions of 1.3–10 nm airborne particles emitted from a low-metallic car brake material (LM), a non-asbestos organic car brake material (NAO) and a train brake cast iron against a cast iron. Particles were generated by a pin-on-disc machine in a sealed chamber and analyzed using a nano condensation nucleus counter, a CPC, and an FMPS. It was found that 1.3–4.4 nm particles are emitted during the friction. For the pairs with the LM and NAO, 1.3–4.4 nm particles predominate in number at temperatures above 160°C. The emission of the 1.3–4.4 nm particles precedes the emission of above 4.4 nm particles. For the cast iron pair, the number of 1.3–4.4 nm particles is smaller than the number of 4.4–10 nm particles. The findings suggest that brake materials produce a significant number of 1.3–4.4 nm airborne particles, and these particles should not be neglected in environmental and tribological studies.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
In this investigation, we summarize performance parameters of 24 TSI CPCs model 3772 and 9 TSI CPCs model 3790 determined at the World Calibration Aerosol Centre Physics hosted by the Leibniz Institute for Tropospheric Research. Model 3790 CPCs are basically identical to model 3772 laminar continuous flow type butanol-based CPCs with a modified temperature difference between saturator and condenser. The average 50% detection efficiency for silver particles for 3772 and 3790 instruments was found to be 7.52 ± 0.04 nm and 24.34 ± 0.29 nm (average mobility diameter ± standard deviation), respectively. Small changes of the temperature difference between saturator and condenser cause larger shifts of the 50% detection efficiencies of 3790 CPCs compared to 3772 CPCs. In addition to the known calibration material dependence of the 50% detection efficiencies of 3790 CPCs, we found a dependence on the morphology of the particles used for calibration. In our experiments more spherical particles shifted the 50% detection efficiencies towards larger mobility diameters.

Copyright © 2016 American Association for Aerosol Research  相似文献   


8.
To assess indoor bioaerosols, a virtual impactor having 1 µm cutoff diameter was designed, fabricated, and evaluated with computational fluid dynamics simulation and also with laboratory test using polystyrene latex particles. Two other cutoff diameters of 635 nm and 1.5 µm were obtained by changing the inlet flow rate and the ratio of minor channel-to-inlet flow rates. In field test, the virtual impactor was operated with varying cutoff diameter and field-emission scanning electron microscope (FE-SEM) analysis was performed for each cutoff diameter to observe morphologies of indoor aerosol particles sampled at the major and minor outlet channels. Particles were sampled at both outlet channels using the SKC Button Aerosol sampler and subsequently cultured. By colony counting, it was found that 56% of cultured fungal particles and 63% of cultured bacterial particles had aerodynamic sizes smaller than 1 µm. MALDI-TOF analysis and visual inspection of culture samples were used to identify indoor bacterial and fungal species, respectively. Nearly same species of bacteria and fungi were detected both in the major and minor flow channels.

© 2017 American Association for Aerosol Research  相似文献   


9.
Light scattering by kaolinite dust samples at 532 nm is studied using a newly developed laboratory apparatus. During the experiments, dust samples are suspended in water, aerosolized by a nebulizer, and then injected into the scattering zone, with or without going through a diffusion drier, to generate either dried dust particles or water droplets with dust inclusions. The light source is a dual wavelength (532 and 1064 nm) diode-pumped solid state laser. Light scattered by an ensemble of particles is collected by a charge-coupled device (CCD) camera, which is mounted on the rotating arm of a stepper motor. The stepper motor rotates the CCD to cover the scattering angle range from 3° to 177°. Polarized scattering light is measured for the horizontally and vertically polarized incident light. The apparatus is calibrated, using pure water droplets as the scattering media. The response function with respect to the scattering angle is obtained by comparing the measurements with Lorenz–Mie calculations and then used in the later data analysis. Measurements show that the backward scattering features of the water droplets are smoothened due to their dust inclusions. Numerical simulations and measurements are extensively compared and discussed. It is found that the Lorenz–Mie theory is inadequate to reproduce the scattering phase functions of either dust particles or water droplets with dust inclusions. A nonspherical aggregate model is applied to simulate the scattering phase functions. The simulation is able to reproduce the overall scattering features; however, substantial discrepancies still exist due to uncertainties in particle shape and refractive index.

Copyright © 2018 American Association for Aerosol Research  相似文献   


10.
A new polar nephelometer (PN) has been developed to measure simultaneously the scattering angular distributions from 11.7° to 168.3° for individual particles in planes parallel and perpendicular to the polarization of the incident laser beam. Each detection plane had 21 silicon photodiode detectors to detect scattered light at a rate of 100 Hz. Laboratory experiments to validate the performance of the instrument were conducted using nearly mono-disperse spherical particles (polystyrene latex [PSL] and nigrosine) and nonspherical particles (sodium chloride [NaCl] and soot). The observed scattering angular distributions for individual PSL particles were in good agreement with the results of simulations based on Mie theory. Complex refractive index values for nigrosine particles were determined by comparing the observed scattering angular distributions with the results of simulations. Clear differences between the measured scattering angular distributions and the results of simulations based on Mie theory assuming spherical particles were observed for NaCl particles (mobility diameters of 500 and 700 nm) and propane soot particles (mobility diameters of 300, 500, and 700 nm). These results are reasonably explained by theoretical predictions. We also conducted initial observations of ambient particles in Nagoya city, Japan. Scattering angular distributions for particles with a mobility diameter of 500 nm and an average effective density of 1.4 or 0.3 g/cm3, which were selected with a combination of differential mobility analyzer and aerosol mass particle analyzer, were measured using the PN. As results, scattering angular distributions for nearly spherical inorganic and organic particles with an average effective density of around 1.4 g/cm3 were found to be distinguishable from nonspherical particles with an average effective density of around 0.3 g/cm3. This study has demonstrated that our PN has the potential to distinguish between spherical and nonspherical particles.

Copyright © 2016 American Association for Aerosol Research  相似文献   


11.
Dimethylamine (DMA) has a stabilizing effect on sulfuric acid (SA) clusters, and the SA and DMA molecules and clusters likely play important roles in both aerosol particle formation and growth in the atmosphere. We use the monodisperse particle growth model for acid-base chemistry in nanoparticle growth (MABNAG) together with direct and indirect observations from the CLOUD4 and CLOUD7 experiments in the cosmics leaving outdoor droplets (CLOUD) chamber at CERN to investigate the size and composition evolution of freshly formed particles consisting of SA, DMA, and water as they grow to 20 nm in dry diameter. Hygroscopic growth factors are measured using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA), which combined with simulations of particle water uptake using the thermodynamic extended-aerosol inorganics model (E-AIM) constrain the chemical composition. MABNAG predicts a particle-phase ratio between DMA and SA molecules of 1.1–1.3 for a 2 nm particle and DMA gas-phase mixing ratios between 3.5 and 80 pptv. These ratios agree well with observations by an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer. Simulations with MABNAG, direct observations of the composition of clusters <2 nm, and indirect observations of the particle composition indicate that the acidity of the nucleated particles decreases as they grow from ~1 to 20 nm. However, MABNAG predicts less acidic particles than suggested by the indirect estimates at 10 nm diameter using the nano-HTDMA measurements, and less acidic particles than observed by a thermal desorption chemical ionization mass spectrometer (TDCIMS) at 10–30 nm. Possible explanations for these discrepancies are discussed.

Copyright © 2016 American Association for Aerosol Research  相似文献   


12.
A new primary standard method for calibrating optical particle counters (OPC) has been developed based on quantitative gravitational deposition on a silicon wafer and accurate counting of the particles by a wafer surface scanner (WSS). The test aerosol consists of 3-μm diameter monodisperse polystyrene latex (PSL) spheres at concentrations in the range of 0.1 cm?3 to 1 cm?3. A key element to the calibration is the ability to generate monodisperse PSL spheres without residue particles by use of a virtual impactor and differential mobility analyzer. The use of these devices reduced the percentage of residue particles from more than 99.98% to about 5%. The expanded relative uncertainty (95% confidence level) in the number concentration determined with a WSS for a deposition of 200 particles is 17.8%. The major uncertainty component arises from the Poisson fluctuations in the aerosol concentration because of the low concentration. This methodology has advantages of a fast scanning time by the WSS of minutes compared to hours or days by microscopy and of counting every particle deposited compared to often only a small fraction via microscopy.

The WSS was used in the calibration of an OPC based on 12 depositions with concentrations ranging from 0.1 cm?3 to 1 cm?3 for each deposition. Make-up air was added to the aerosol entering the OPC so that the lowest achievable concentration for the OPC measurement is about 0.01 cm?3 in this study. The detection efficiency of the OPC was measured to be 0.984 with an expanded uncertainty of 13.4%.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.
A rectangular slit micro-aerodynamic-lens (μADL) aerosol concentrator operating at atmospheric pressure has been developed. A single stage version has shown concentration ratios of up to 40:1 for 1 μm aerosol particles while particles larger than 2 μm can be concentrated by more than 100:1 in a single stage. The design of this device has been guided by unsteady 3D CFD modeling using detached eddy simulations (DES), and has been validated experimentally using polystyrene spheres and salt crystals of known aerodynamic diameters. The pressure drop in the device does not exceed 1.5 kPa in the major flow and 0.3 kPa in the minor flow at a total flow of 10 slpm.

Copyright 2014 American Association for Aerosol Research  相似文献   


14.
Mobility particle size spectrometers (MPSS) belong to the essential instruments in aerosol science that determine the particle number size distribution (PNSD) in the submicrometer size range. Following calibration procedures and target uncertainties against standards and reference instruments are suggested for a complete MPSS quality assurance program: (a) calibration of the CPC counting efficiency curve (within 5% for the plateau counting efficiency; within 1 nm for the 50% detection efficiency diameter), (b) sizing calibration of the MPSS, using a certified polystyrene latex (PSL) particle size standard at 203 nm (within 3%), (c) intercomparison of the PNSD of the MPSS (within 10% and 20% of the dN/dlogDP concentration for the particle size range 20–200 and 200–800 nm, respectively), and (d) intercomparison of the integral PNC of the MPSS (within 10%). Furthermore, following measurement uncertainties have been investigated: (a) PSL particle size standards in the range from 100 to 500 nm match within 1% after sizing calibration at 203 nm. (b) Bipolar diffusion chargers based on the radioactive nuclides Kr85, Am241, and Ni63 and a new ionizer based on corona discharge follow the recommended bipolar charge distribution, while soft X-ray-based charges may alter faster than expected. (c) The use of a positive high voltage supply show a 10% better performance than a negative one. (d) The intercomparison of the integral PNC of an MPSS against the total number concentration is still within the target uncertainty at an ambient pressure of approximately 500 hPa.

Copyright © 2018 Published with license by American Association for Aerosol Research  相似文献   


15.
Objectives: The aim of this study was to evaluate the effect of bioactive glass–ceramic particles (Biosilicate®) addition on surface nanoroughness and topography of Resin-modified glass ionomer cements (RMGICs).

Methods: Experimental materials were made by incorporating 2 wt% of Biosilicate® into Fuji II LC® (FL) and Vitremer® (VT) powders. Disks of RMGICs (with and without Biosilicate®) measuring 0.5 cm (diameter) × 0.5 mm (thickness) were fabricated and polished. Samples were stored at 37 °C in dry or immersed in distilled water for 30 days. Digital images (20 × 20 μm) from the surfaces were obtained by means of an atomic force microscopy. Three images were acquired for each sample, and four nanoroughness measurements were performed in each image. Nanoroughness (Ra, nm) was assessed by Nanoscope Software V7. Data were analyzed with ANOVA and Student–Newman–Keuls multiple comparisons (p < 0.05). SEM images were obtained for surface topography analysis.

Results: FL was significantly rougher than VT (p < 0.05) in wet and dry conditions. The addition of Biosilicate® increased the surface roughness in VT and decreased in FL, regardless of the storage media (p ≤ 0.05). No differences existed between materials and storage conditions after Biosilicate® addition. Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.

Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.  相似文献   


16.
Understanding the links between aerosol and cloud and radiative properties remains a large uncertainty in predicting Earth's changing energy budget. Surfactants are observed in ambient atmospheric aerosol particles, and their effect on cloud droplet growth is a mechanism that was, until recently, neglected in model calculations of particle activation and droplet growth. In this study, coarse mode aqueous aerosol particles were created containing the surfactant Igepal CA-630 and NaCl. The evaporation and condensation of these individual aqueous particles were investigated using an aerosol optical trap combined with Raman spectroscopy. For a relative humidity (RH) change from 70% to 80%, droplets containing both Igepal and NaCl at atmospheric concentrations exhibited on average more than 4% larger changes in droplet radii, compared to droplets containing NaCl only. This indicates enhanced water uptake in the presence of surfactants, but this result is unexpected based on the standard calculation of the effect of surfactants, using surface tension reduction and/or hygroscopicity changes, for particles of this size. One implication of these results is that in periods with increasing RH, surfactant-containing aqueous particles may grow larger than similarly sized aqueous NaCl particles without surfactants, thus shifting atmospheric particle size distributions, influencing particle growth, and affecting aerosol loading, visibility, and radiative forcing.

Copyright © 2018 American Association for Aerosol Research  相似文献   


17.
Interest in the size distribution of particles emitted from biomass cookstoves stems from the hypothesis that exposure to ultrafine particles is more detrimental to human health than exposure to accumulation mode or other size regimes. Previous studies have reported that gasifier cookstoves emit smaller particles than other cookstove designs under steady operating conditions. In the present study, the number size distribution of particles emitted from a forced-air gasifier cookstove was measured at 1 Hz as the stove transitioned between several steady and transient operating modes. During normal operation, when the stove functioned as a top-lit updraft gasifier, the distribution was bimodal, with peaks at 10 nm and 40 nm, when a pot of water was on the stove. The distribution became unimodal with a peak at 10 nm when the pot was removed. Once the fuel bed had completely gasified and the secondary flame extinguished, the concentration of particles increased and the peak in number concentration shifted to approximately 80 nm. After refueling, when the stove operated as a conventional updraft gasifier, the peak in number concentration decreased to 10 nm. When the secondary flame extinguished a second time, the peak in number concentration increased to approximately 100 nm before decreasing to 20 nm during the char burn-out phase. These results demonstrate that changes in operational mode influence the combustion process and produce distinct changes in the size distribution and rate of particle emissions.

Copyright © 2018 American Association for Aerosol Research  相似文献   


18.
The Institute of Radioprotection and Nuclear Safety (IRSN in French) is conducting research on the impact of a fire on the behaviour of containment devices such as high efficiency particulate air (HEPA) pleated filters for radioactive materials. This work aims to study the clogging of HEPA filters in case of fire involving realistic materials (polymers making up gloves boxes, waste treatment solvent, hydraulic oil, solid material mixtures making up a trash bin, electrical cables, and cabinets) used in nuclear facilities, from the medium to large scale. The clogging kinetics of industrial pleated HEPA filters is monitored by measuring the pressure drop of the filters and the filtered air temperature at a given filtration velocity (from 0.23 to 2.1 cm/s). Upstream HEPA filters, combustion aerosols are characterized in terms of size distribution, mass concentration, composition, and particle morphology using, respectively, a DMS500 (CambustionLTD), glass fiber filter sampling, and transmission electron microscope analysis of particles deposited on TEM grids. Particles emitted denote well-known fractal morphology, are composed of carbonaceous primary particles with diameters ranging from 31 nm to 48 nm and showing an high clogging efficiency. An empirical relationship has been successfully applied to the obtained results for a larger range of fuels, filtration velocities and fire conditions.

Finally, experiments have been performed on a large-scale facility, using full-scale fire scenarios (electrical cabinet, constant, and variable filtration velocity) and a reasonable agreement was observed with our empirical relationship. At this scale, particles appear to be compact, with a complex composition and diameters close to 220 nm with a lower clogging efficiency.

Copyright 2014 American Association for Aerosol Research  相似文献   


19.
A butanol-type ultrafine condensation particle counter (UCPC, Model 3776, TSI, Inc., Shoreview, MN, USA), which can achieve a 50% detection efficiency diameter (d50) of 2.5 nm using a capillary-sheath structure, was modified and tested in the laboratory for airborne measurements. The aerosol flow rate through the capillary is a key factor affecting the quantification of aerosol particle number concentrations. A pressure-dependent correction factor for the aerosol flow rate was determined using a newly added mass flow meter for the sheath flow and the external calibration system. The effect of particle coincidence in the optical sensing volume was evaluated using an aerosol electrometer (AE, Model 3068B, TSI, Inc.) as a reference. An additional correction factor for the coincidence effect was derived to improve the quantification accuracy at higher concentrations. The particle detection efficiency relative to the AE was measured for mobility diameters of 3.1–50 nm and inlet absolute pressures of 101–40 kPa. The pressure dependence of the d50 value, asymptotic detection efficiency, and shape of the particle detection efficiency curve is discussed, along with simple theoretical calculations for the diffusion loss of particles and the butanol saturation ratio in the condenser.

© 2017 American Association for Aerosol Science  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号