首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the implication of polyethylene wear debris as a major cause of osteolysis in total joint replacements, there has been much interest in polyethylene wear studies and in cell culture studies using ultra-high molecular weight polyethylene (UHMWPE) wear debris. Studies have shown that particles in the 0.1-10 microns size range are particularly important in causing adverse cellular reactions resulting in osteolysis. The morphology, the mass and size distributions, and the number of wear particles produced at the joint surfaces are influenced by the tribological conditions at the joint. Laboratory wear tests are used to investigate the wear properties of prosthetic joint materials and different research groups have used different lubricants in these tests. This paper shows that the volumetric wear and morphology of UHMWPE particles generated in vitro are influenced by the type of lubricant used. This study compared, quantitatively, UHMWPE wear debris generated in deionized water to debris that was generated in a system lubricated by bovine serum which was diluted to 25 per cent. The wear factors of UHMWPE in water and serum lubricants were significantly different (p < 0.05). UHMWPE wore 14 times more in water than in serum. Quantitative analysis of the wear particles showed that the debris that was generated in serum was morphologically different from debris that was produced in a water-lubricated system. Furthermore, the particles produced in serum showed a closer similarity to those found in retrieved acetabular tissues.  相似文献   

2.
Crosslinked ultra-high molecular weight polyethylene (UHMWPE) has been developed and introduced into clinical practice in order to reduce wear in the hip. Zero wear of highly crosslinked UHMWPE in vitro has been reported by some groups using lubricants with high concentrations of serum proteins in hip simulators. In contrast, some clinical studies have reported finite wear rates. The aim of this study was to compare the wear rates, wear surfaces, and wear debris produced by UHMWPE with different levels of crosslinking in a hip joint simulator, with lower, more physiologically relevant concentrations of protein in the lubricant. The UHMWPEs were tested in the Leeds ProSim hip joint simulator against cobalt-chromium (CoCr) femoral heads. The wear particles were isolated and imaged using a field emission gun scanning electron microscope (FEGSEM) at high resolution. The highly crosslinked UHMWPEs had significantly lower wear volumes than the non-crosslinked UHMWPEs. No significant difference was found in the percentage number and percentage volume of the particles in different size ranges from any of the materials. They had similar values of specific biological activity. The functional biological activity (FBA), which takes into account the wear volume and specific biological activity, showed that the highly crosslinked UHMWPEs had lower FBAs due to their lower wear volume.  相似文献   

3.
There is considerable interest in the wear of polyethylene and the resulting wear-debris-induced osteolysis in artificial hip joints. Proteins play an important role as boundary lubricants in vivo in the pseudosynovial fluid, and these are reproduced in in vitro tests through the use of bovine serum. Little is known, however, about the effect of phospholipid concentrations within proteinaceous solutions on the wear of ultra-high molecular weight polyethylene (UHMWPE). The effects of protein-containing lubricants with 0.05, 0.5 and 5 per cent (w/v) phosphatidyl choline concentrations on the wear of ultra-high molecular weight polyethylene (UHMWPE) were compared with 25 per cent (v/v) bovine serum which had 0.01 per cent (w/v) lipid; the effects were compared in a hip joint simulator with smooth (n = 4) and scratched (n = 3) femoral heads. The control bovine serum lubricant produced UHWMPE wear of 55 and 115 mm3/10(6) cycles on the smooth and rough heads respectively. The increased phospholipid concentration significantly reduced the wear rate. At the higher concentration (5% w/v phosphatidyl choline) the average wear was reduced to less than 2 mm3/10(6) cycles. Even with the relatively low concentrations of 0.05% w/v phosphatidyl choline the wear was reduced by at least threefold compared with the bovine serum tests for both the smooth and rough femoral heads. There may be considerable differences in the phospholipid concentrations in patients' synovial fluid and this is highly likely to produce considerable variation in wear rates. In vitro, differences in the phospholipid concentration of lubricants may also cause variation in wear rates between different simulator tests.  相似文献   

4.
Total hip replacement has become one of the most successful orthopaedic procedures. However, complications due to infections may give serious problems and have devastating consequences for the hip implant. The use of a temporary three-dimensional polymethylmethacrylate (PMMA) cement spacer may be an alternative to solve infections in hip implants, improving the lives of patients awaiting reimplantation. In order to evaluate their wear behaviour, five PMMA Spacer-G femoral heads were tested against five post-mortem pelves in a hip joint simulator with bovine calf serum as lubricant. The surface of the worn spacers was characterized by scanning electron microscopy (SEM) analysis; all the samples revealed a similar morphology, showing areas characterized by different degrees of wear. Particle debris was isolated from the lubricant and PMMA particles and bone fractions were quantified. The amount of debris was found to be higher than where no-temporary prostheses were used. However, this result is acceptable since wear debris is removed by lavage irrigation when the Spacer-G is explanted. On the basis of these data, it is considered that the use of the cement Spacer-G could be a promising approach to the treatment of complicated infections of the hip joint. Therefore, Spacer-G is worthy of further research.  相似文献   

5.
Ultra-high molecular weight polyethylene (UHMWPE) acetabular cups were tested against alumina-ceramic femoral heads using a new type of hip joint simulator according to ISO/FDIS 14242-1. Bovine serum as well as newborn calf serum were used as test fluids. Total polyethylene wear was determined by weight loss of the cups. In addition. wear depth and its distribution were recorded by means of a coordinate measurement system. Wear particle analysis and inspection of the worn polyethylene surfaces using light and scanning electron microscopy (SEM) were performed to analyse damage and identify the acting wear mechanisms. The total wear rate was determined to be 22.07 +/- 1.75 mg/10(6) cycles for the bovine serum group and 26.57 + 3.55 mg/10(6) cycles for the calf serum group. Unexpectedly, the formation of two wear vectors corresponding to recent clinical findings was detected. Retrieved polyethylene wear debris was comparable in size and shape with clinical findings. The test method described by ISO/FDIS 14242-1 produced reliable and reproducible wear data using UHMWPE acetabular cups articulating against alumina-ceramic heads. In the authors' opinion, the lubricant composition should be described in more detail, since the protein and additive content seem to have a high impact on the wear results. It needs to be emphasized that the findings of this study cannot be regarded as a general validation of hip wear tests according to ISO/FDIS 14242-1 but are limited to the material combinations investigated herein. Further testing of other clinically relevant materials and interlaboratory ring tests must follow.  相似文献   

6.
In this study, osteoarthritic and periprosthetic synovial fluid samples were rheologically and biochemically compared to develop a hyaluronic acid (HA) supplemented bovine serum (BS) lubricant that mimicked the properties of human joint synovial fluid. The effect of this BS + HA lubricant (50 per cent bovine calf serum + 1.5 g/l HA) on the wear rate of ultra-high molecular weight polyethylene (UHMWPE) during a total knee replacement wear test was then investigated. In conjunction with biochemical similarities, the rheological analysis showed that the BS + HA lubricant viscosity was not statistically different to aspirated total knee arthroplasty (TKA) revision joint fluid viscosity over a range of physiologic shear rates. Gravimetric results at 5 million wear testing cycles showed that the BS + HA lubricant produced an average of 6.88 times more UHMWPE wear than 50 per cent bovine serum lubricant alone. The BS + HA lubricated CoCr femoral component surfaces revealed pitting and surface roughening that was not observed using standard bovine serum only lubricants, but that was similar to the metallic surface corrosion observed on in vivo CoCr femoral component retrievals. These findings support the hypothesis that the addition of HA to simulator lubricant is capable of producing CoCr femoral component surface damage similar to that observed in vivo.  相似文献   

7.
Comparison of friction and lubrication of different hip prostheses   总被引:2,自引:0,他引:2  
It is well documented that an important cause of osteolysis and subsequent loosening of replacement hip joints is polyethylene wear debris. To avoid this, interest has been renewed in metal-on-metal and ceramic-on-ceramic prostheses. Various workers have assessed the lubrication modes of different joints by measuring the friction at the bearing surfaces, using different lubricants. Measurements of friction factors of a series of hip prostheses were undertaken using carboxymethyl cellulose (CMC) fluids, silicone fluids, synovial fluid and different concentrations of bovine serum as the lubricant. The experimental results were compared with theoretical predictions of film thicknesses and lubrication modes. A strong correlation was observed between experiment and theory when employing CMC fluids or silicone fluids as the lubricant. Mixed lubrication was found to occur in the metal-on-metal (CoCrMo/CoCrMo) joints with all lubricants at a viscosity within the physiological range. This was also the case for the metal-on-plastic (CoCrMo/ultra-high molecular weight polyethylene) joints. The ceramic-on-ceramic (Al2O3/Al2O3) joints, however, exhibited full fluid film lubrication with the synthetic lubricants but mixed lubrication with the biological lubricants. Employing a biological fluid as the lubricant affected the friction to varying degrees when compared with the synthetic lubricants. In the case of the ceramic-on-ceramic joints it acted to increase the friction factor tenfold; however, for the metal-on-metal joints, biological fluids gave slightly lower friction than the synthetic lubricants did. This suggests that, when measuring friction and wear of artificial joints, a standard lubricant should be used.  相似文献   

8.
An in vitro wear study of alumina-alumina total hip prostheses.   总被引:1,自引:0,他引:1  
Four 28 mm diameter alumina-alumina hip prostheses were tested in the Mkll Durham hip simulator for 5 x 10(6) cycles using 25 per cent bovine serum as lubricant. Wear of the heads and cups was measured gravimetrically. The mean and standard deviation of the wear rate for the alumina cups was 0.097 +/- 0.039 mm3/10(6) cycles. The femoral heads produced such low wear that it could not be measured by weighing but could be detected byincreased surface roughness measurements. Such low wear rates represent about one-five-hundredthof the wear of ultra-high molecular weight polyethylene (UHMWPE) against ceramic in a similar test and supports work which indicates that fluid film lubrication exists in these joints.  相似文献   

9.
For appropriate in vitro wear testing of prostheses and their biomaterials, the choice of lubricant is critical. Bovine serum is the lubricant recommended by several international standards for wear testing artificial joints and their biomaterials because the wear rate and wear mechanisms closely match clinical results of polyethylene bearings. The main problem with the use of bovine serum as a lubricant is protein degradation and precipitation formation, effects that are recognized as having a direct impact on wear processes. Hence, some researchers have questioned the validity of using bovine serum in simulator testing. This paper reviews the various lubricants used in laboratory wear studies and also the properties of the synovial fluid that the lubricant is trying to replicate. It is clear from the literature survey that the composition of bovine-serum-based lubricants does not match that of synovial fluid. In view of this conclusion, it is suggested that there is a need to develop an alternative lubricant that can replace bovine serum.  相似文献   

10.
The influence of microstructure on the wear of cobalt-based alloys used in metal-on-metal hip implants was investigated in a boundary lubrication regime designed to represent the conditions that occurred some of the time in vivo. These cobalt-chromium-molybdenum alloys were either wrought, with a total carbon content of 0.05 or 0.23 wt %, cast with a solution-annealing procedure or simply as-cast but not solution annealed. Bars of these different alloy grades were subjected to various heat treatments to develop different microstructures. The wear was evaluated in a linear-tracking reciprocating pin-on-plate apparatus with a 25 per cent bovine serum lubricant. The wear was found to be strongly affected by the dissolved carbon content of the alloys and mostly independent of grain size or the carbide characteristics. The increased carbon in solid solution caused reductions in volumetric wear because carbon helped to stabilize a face-centred cubic crystal structure, thus limiting the amount of strain-induced transformation to a hexagonal close-packed crystal structure. Based on the observed surface twining in and around the contact zone and the potentially detrimental effect of the hexagonal close-packed phase, it was postulated that the wear of cobalt-based alloys in the present study was controlled by a deformation mechanism.  相似文献   

11.
Calf serum lubricants consisting of various polypeptide constituent fractions are routinely used in knee wear simulators as part of the standardized test protocol. Three calf sera (bovine, new-born and alpha) were diluted as per the recommendation of ISO 14243-3 and used in displacement-controlled knee wear simulators to investigate their effects on polyethylene wear. Biochemical analyses included measuring total polypeptide degradation, electrophoretic profiles and low-molecular weight polypeptide concentrations to elucidate their involvement in the wear process. The effects of the various calf sera constituent fractions on microbial growth were also explored. The polyethylene wear rates and the results from the biochemical analyses for the three calf serum lubricants were all found to be statistically significantly different from each other. The lubricant derived from the alpha-calf serum was closest in constituent fractions to human synovial fluid. It also showed the lowest polyethylene wear rate (14.38 +/- 0.85 mm3/million cycles) and the lowest amount of polypeptide degradation (7.77 +/- 3.87%). Furthermore, the alpha-calf serum lubricant was associated with the least amount of change in the electrophoretic profile, the least change in low-molecular weight polypeptide concentration, and the lowest microbial growth in the presence of sodium azide (a microbial inhibitor conventionally used in implant wear testing). Replacing sodium azide with a broad spectrum antibiotic-antimycotic eradicated the microbial growth. Some speculation was entertained regarding the effect of alpha-calf serum on colloid-mediated boundary lubrication. Based on the results, it was recommended that ISO 14243-3 be modified to include guidelines on calf serum constituent fractions that would favour using alpha-calf serum in order to improve the fidelity of the simulation in knee implant wear testing.  相似文献   

12.
There is currently much interest in the characterisation of wear debris from different types of artificial hip joints. There have been numerous studies on the wear of UHMWPE in hip joint simulators, but relatively few studies on the wear of alternative materials such as metal-on-metal (MOM) and ceramic-on-ceramic (COC). The aim of this study was to compare the wear volumes and wear debris generated from zirconia ceramic-on-UHMWPE, MOM and COC hip joints under identical conditions in the same hip joint simulator.

All prostheses showed an initial higher ‘bedding in’ wear rate, which was followed by a lower steady state wear rate. The zirconia ceramic-on UHMWPE prostheses showed the highest wear rates (31±4.0 mm3/million cycles), followed by the MOM (1.23±0.5 mm/million cycles), with the COC prostheses showing significantly (P<0.01) lower wear rates at 0.05±0.02 mm3/million cycles. The mode (±95% confidence limits) of the size distribution of the UHMWPE wear debris was 300±200, 30±2.25 nm for the metal particles, and 9±0.5 nm for the ceramic wear particles. The UHMWPE particles were significantly larger (P<0.05) than the metal and ceramic wear particles, and the metal particles were significantly larger (P<0.05) than the ceramic wear particles. A variety of morphologies and sizes were observed for the UHMWPE wear particles, including submicrometer granules and large flakes in excess of 50 μm. However, the wear particles generated in both the MOM and COC articulations were very uniform in size and oval or round in shape.

This investigation has demonstrated substantial differences in volumetric wear. The in vitro wear rates for the zirconia-on-UHMWPE and MOM are comparable with clinical studies and the UHMWPE and metal wear particles were similar to the wear debris isolated from retrieved tissues. However, the alumina/alumina wear rate was lower than some clinical retrieval studies, and the severe wear patterns and micrometer-sized particles described in vivo were not reproduced here.

This study revealed significant differences in the wear volumes and particle sizes from the three different prostheses. In addition, this study has shown that the alternative bearing materials such as MOM and COC may offer a considerable advantage over the more traditional articulations which utilise UHMWPE as a bearing material, both in terms of wear volume and osteolytic potential.  相似文献   


13.
The wear, wear debris and functional biological activity of non-crosslinked and moderately crosslinked ultrahigh molecular weight polyethylene (UHMWPE) acetabular cups have been com pared when articulating against smooth and intentionally scratched femoral heads. Volumetric wear rates were determined in a hip joint simulator and the debris was isolated from the lubricant and characterized by the percentage number and volumetric concentration as a function of particle size. The volumetric concentration was integrated with the biological activity function determined from in vitro cell culture studies to predict an index of specific biological activity (SBA). The product of specific biological activity and volumetric wear rate was used to determine the index of functional biological activity (FBA). On smooth femoral heads the crosslinked UHMWPE had a 30 per cent lower wear rate, but it had a greater percentage volume of smaller, more biologically active particles, which resulted in a similar index of FBA compared with the non-crosslinked material. On the scratched femoral heads the volumetric wear rate was three times higher for the moderately crosslinked UHMWPE and two times higher for the non-crosslinked UHMWPE compared with the smooth femoral heads. This resulted in a higher wear rate for the moderately crosslinked material on the scratched femoral heads. All the differences in wear rate were statistically significant. There were only small differences in particle volume concentration distributions, and this resulted in similar indices of FBA which were approximately twice the values of those found on the smooth femoral heads. Both materials showed lower wear and FBA than for previously studied aged and oxidized UHMWPE gamma irradiated in air. However, this study did not reveal any advantage in terms of predicted FBA for moderately crosslinked UHMWPE compared with non-crosslinked UHMWPE.  相似文献   

14.
Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids   总被引:1,自引:0,他引:1  
D. Sun  J.A. Wharton  R.J.K. Wood 《Wear》2009,267(11):1845-1855
The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore, this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms—nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (4 μm) and Al2O3 (1 μm), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins.  相似文献   

15.
The comparative performance of artificial hip joints has been extensively investigated in vitro through measurements of wear volumes. In vivo a major cause of long-term failure is wear-debris-induced osteolysis. These adverse biological reactions are not simply dependent on wear volume, but are also controlled by the size and volumetric concentration of the debris. A novel model is presented which predicts functional biological activity; this is determined by integrating the product of the biological activity function and the volumetric concentration function with the wear volume over the whole particle size range. This model combines conventional wear volume measurements with particle analysis and the output from in vitro cell culture studies to provide a new indicator of osteolytic potential. The application of the model is demonstrated through comparison of the functional biological activity of wear debris from polyethylene acetabular cups articulating under three different conditions in a hip joint simulator.  相似文献   

16.
The objective of this study was to compare the effects of static, sinusoidal and physiological load-profiles on wear of Al2O3–PTFE materials. This was an accelerated wear model of clinical relevance. In nine experiments, the peak load-levels were varied from 1 to 4 kN in a hip simulator with multi-directional kinematics and with bovine serum used as the lubricant. Systematic wear differences were checked using three sizes of femoral heads in each experiment. The Paul load-profile used was found to be more aggressive than sinusoidal, raising the polytetrafluoroethylene (PTFE) wear-rates by 28%. The PTFE cups showed a very mild response to increased load magnitudes, only 11–20% increase evident in volumetric wear per 1 kN increase in load. One recommendation was that simulator wear-studies adopt a 0.25–2.5 kN Paul load-profile as their standard. An experiment with 0.84 kN constant-load also performed satisfactorily, with PTFE wear-rates actually higher than with the 1 kN sine and Paul load-profiles. Some wear anomalies were encountered due to the use of serum lubrication. Combinations of large head size, high load-magnitudes, the Paul load-profile and the high serum protein concentrations used in this study were at times contributing factors. Use of low-protein serum solution may be advisable for wear studies, not only to properly simulate the polymeric wear characteristics but also to minimize the degradation artifacts more prevalent in higher protein-concentrations.  相似文献   

17.
Today, in spite of the long experience acquired in the field of total hip replacements, prosthetic systems are still far from reproducing the natural system. One of the main causes of long term failure is the amount of wear debris produced by the tribological coupling between acetabolar cup and femoral head. The authors carried out experimental research in order to investigate the tribological coupling of various prosthetic biomaterials. Experimental tests were carried out with the pin-on-disc tribometer in dry, water and human serum as lubricant. This study sets new bases for the design of modern hip prostheses: 1. the wettability difference among the materials in tribological coupling, which is the necessary condition to promote efficient lubrication; 2. the use of Peek reinforced with long and unidirectional carbon fibres in the prosthetic field  相似文献   

18.
The effect of geometry change of the bearing surfaces owing to wear on the elastohydrodynamic lubrication (EHL) of metal-on-metal (MOM) hip bearings has been investigated theoretically in the present study. A particular MOM Metasul bearing (Zimmer GmbH) was considered, and was tested in a hip simulator using diluted bovine serum. The geometry of the worn bearing surface was measured using a coordinate measuring machine (CMM) and was modelled theoretically on the assumption of spherical geometries determined from the maximum linear wear depth and the angle of the worn region. Both the CMM measurement and the theoretical calculation were directly incorporated into the elastohydrodynamic lubrication analysis. It was found that the geometry of the original machined bearing surfaces, particularly of the femoral head with its out-of-roundness, could lead to a large reduction in the predicted lubricant film thickness and an increase in pressure. However, these non-spherical deviations can be expected to be smoothed out quickly during the initial running-in period. For a given worn bearing surface, the predicted lubricant film thickness and pressure distribution, based on CMM measurement, were found to be in good overall agreement with those obtained with the theoretical model based on the maximum linear wear depth and the angle of the worn region. The gradual increase in linear wear during the running-in period resulted in an improvement in the conformity and consequently an increase in the predicted lubricant film thickness and a decrease in the pressure. For the Metasul bearing tested in an AMTI hip simulator, a maximum total linear wear depth of approximately 13 microm was measured after 1 million cycles and remained unchanged up to 5 million cycles. This resulted in a threefold increase in the predicted average lubricant film thickness. Consequently, it was possible for the Metasul bearing to achieve a fluid film lubrication regime during this period, and this was consistent with the minimal wear observed between 1 and 5 million cycles. However, under adverse in vivo conditions associated with start-up and stopping and depleted lubrication, wear of the bearing surfaces can still occur. An increase in the wear depth beyond a certain limit was shown to lead to the constriction of the lubricant film around the edge of the contact conjunction and consequently to a decrease in the lubricant film thickness. Continuous cycles of a running-in wear period followed by a steady state wear period may be inevitable in MOM hip implants. This highlights the importance of minimizing the wear in these devices during the initial running-in period, particularly from design and manufacturing points of view.  相似文献   

19.
J. G. Bowsher  J. C. Shelton 《Wear》2001,250(1-12):167-179
Over the last three decades, tribological studies of polyethylene total hip replacements have been undertaken using a simplified model of normal walking. As hip prostheses are being implanted in younger and more active patients, coupled with the increased wear resistance of crosslinked polyethylene, such in vitro approximations in activity are very limiting. Using a hip joint simulator, the influence of a significant increase in patient activity was studied by applying a series of simulated walking, stumbling and jogging sequences, at varying cycle speeds, using crosslinked UHMWPE/CoCrMo components, with both smooth and roughened femoral heads. All tests were performed using 25% bovine calf serum, and all components were positioned physiologically. The effects on wear, frictional torque, counterface roughness, lubricant temperature, material deformation and particle morphology were measured and analysed. It was found that with smooth heads and non-constraining socket fixtures, the occurrence of excessive stumbling at 1 Hz (5 kN max) had a negligible effect on the wear rate of polyethylene, whilst simulated jogging at 1.75 Hz (4.5 kN max) only showed a median increase in wear volume of 40% compared to normal walking. Fast walking showed the largest wear rate, and was consistently greater than for simulated jogging, thus, suggesting that short periods of increased load and speed have a relatively small effect on polyethylene wear. However, increasing the femoral roughness Ra to 0.38 μm under simulated jogging, 1.75 Hz, led to a massive increase in wear and frictional torque, generating wear rates >3000 mm3/106 cycles for crosslinked polyethylene. Surface topography, sliding speed and the type of socket fixturing were shown to be the most influential factors when simulating increased patient activity.  相似文献   

20.
Local backside wear measurements on ultra-high molecular weight polyethylene (UHMWPE) tibial inserts in LCS mobile bearing knee prostheses have been performed using a new radioisotope tracing technique. The radioisotope tracers 97Ru and 101mRh were synthesized via a fusion evaporation reaction and recoil-implanted into cylindrical plugs of UHMWPE. The labelled plugs were carefully fitted into tibial inserts at two relevant locations. With bovine serum acting as a lubricant, the tibial inserts were then worn in vitro for 500,000 and 780,000 cycles, respectively, in a pneumatic knee motion simulator. Results reflect the non-linear change of wear during the wear-in phase and its evolution to a long-term steady-state rate. This new technique shows potential for extracting localized wear rates across the backside of a tibial insert in order to develop a comprehensive backside wear model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号