首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The low-temperature tetragonal ( t ) to monoclinic ( m ) phase transition in ZrO2–12 mol% CeO2 was studied by Fourier-transform infrared spectroscopy and X-ray diffractometry (XRD). When the ZrO2–12 mol% CeO2 was cooled, the t → m phase transition occurred at about 120 K; this caused significant changes in the infrared reflectance spectra and X-ray diffractograms. As the phase transition proceeded, "difference spectra" obtained by subtracting the infrared spectra before and after the phase transition revealed two infrared modes at 575 and 740 cm−1 which were assigned to the m phase. The volume fraction of the m phase (determined by XRD) and the subtraction coefficient (defined such that the difference spectra reproduced the infrared spectrum of m -ZrO2) were consistent with each other; this revealed a marked discontinuity at about 120 K. Full width at half maximum of the ( 1 11) m and (111) t reflections also indicated a similar discontinuity at about 120 K.  相似文献   

2.
Low-temperature phase equilibria ranging from 1000° to 1200°C in the ZrO2–CeO2 system were investigated by annealing compositionally homogeneous ZrO2–CeO2 solid solutions in a Na2B2O7.1 NaF flux. The 5 mol% CeO2 samples decomposed into monoclinic ( m ) and tetragonal ( t ) phases during annealing at 1100°2 and 1120°C, and the t -phase transformed diffusionlessly into monoclinic ( m ') symmetry during quenching. A eutectoid reaction, t → ( m + c ), was confirmed to occur at 1055°± 10°C, where the equilibrium compositions of the t -, m -, and c -phases were 11.2 ± 2.8, 0.9 ± 0.9, and 84 ± 1 mol% CeO2, respectively. The equilibrium phase boundaries were almost independent of the annealing time and/or the flux:sample ratio, which indicates that the flux accelerates the reaction rate withouts affecting the equilibration. The previous data are discussed using metastable–stable phase diagrams. The discrepancies of the low-temperature phase diagram in the literature are attributable to either regarding the metastable phase boundaries as stable ones or ignoring the sluggish kinetics.  相似文献   

3.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

4.
Gd2O3-doped Bi2O3 polycrystalline ceramics containing between 2 and 7 mol% Gd2O3 were fabricated by pressureless sintering powder compacts. The as-sintered samples were tetragonal at room temperature. Hightemperature X-ray diffraction (XRD) traces showed that the samples were cubic at elevated temperatures and transformed into the tetragonal polymorph during cooling. On the basis of conductivity measurements as a function of temperature and differential scanning calorimetry (DSC), the cubic → tetragonal as well as tetragonal → cubic → teansition temperatures were determined as a function of Gd2O3 concentration. The cubic → tetragonal transformation appears to be a displacive transformation. It was observed that additions of ZrO2 as a dopant, which is known to suppress cation interdiffusion in rare-earth oxide–Bi2O3 systems, did not suppress the transition, consistent with it being a displacive transition. Annealing of samples at temperatures 660°C for several hundred hours led to decomposition into a mixture of monoclinic and rhombohedral phases. This shows that the tetragonal polymorph is a metastable phase.  相似文献   

5.
Tetragonal zirconia ( t -ZrO2) grains in an annealed ZrO2 8 wt% Y2O3 alloy transformed to orthorhombic ( o ) or monoclinic ( m ) symmetry by stresses induced by localized electron beam heating in the transmission electron microscope. Different transformation mechanisms were observed, depending on foil thickness and orientation of individual grains. In thicker grains (≥150 nm), the transformation proceeded by a burst-like growth of m laths, and this is believed to approximate bulk behavior. In thinner grains near the edge of the foil, usually those with a [100], orientation perpendicular to the thin-foil surface, "continuous" growth of an o or m phase with an antiphase-boundary-containing microstructure was observed. The o phase is believed to be a high-pressure poly-morph of ZrO2, which forms (paradoxically) as a thin-foil artifact because it is less dense than t -ZrO2, but more dense than m -ZrO2. In some very thin grains, the t → m transformation was thermoelastic. Furthermore, a mottled structure often occurred just before the t → m or t → o transformation, which is attributed to surface transformation. Aside from the lath formation, the observed transformation modes are a result of the reduced constraints in thin foils.  相似文献   

6.
The microstructure of a pressureless sintered (1605°C, 90 min) O'+β' SiAlON ceramic with CeO2 doping has been investigated. It is duplex in nature, consisting of very large, slablike elongated O' grains (20–30 μm long), and a continuous matrix of small rodlike β' grains (< 1.0 μm in length). Many α-Si3N4 inclusions (0.1–0.5 μm in size) were found in the large O' grains. CeO2-doping and its high doping level as well as the high Al2O3 concentration were thought to be the main reasons for accelerating the reaction between the α-Si3N4 and the Si-Al-O-N liquid to precipitate O'–SiAlON. This caused the supergrowth of O' grains. The rapid growth of O' crystals isolated the remnant α–Si3N4 from the reacting liquid, resulting in a delay in the α→β-Si3N4 transformation. The large O' grains and the α-Si3N4 inclusions have a pronounced effect on the strength degradation of O'+β' ceramics.  相似文献   

7.
A wet-chemical approach is applied to derive fine powders with compositions 11 mol% CeO2-ZrO2, 1 mol% YO1.5-10 mol% CeO2-ZrO2, 12 mol% CeO2-ZrO2, and 2 mol% YO1.5-10 mol% CeO2-ZrO2 by the coprecipitation method. The characteristics of the as-derived powders are evaluated through thermal analysis and electron microscopy. The sintering behavior of the calcined powders is carried out at 1400° and 1500°C for 1 to 10 h. Sintered density higher than 98% of theoretical is achieved for sintering at 1400°C for several hours. The as-sintered density dependence on the sintering condition is related to the extent of tetragonal-to-monoclinic phase transformation as well as the associated microcracks. Partial substitution by Y2O3 in CeO2-ZrO2 results in reduced grain size and tends to stabilize the tetragonal structure. Y2O3 is more effective than CeO2 with respect to the grain size refinement and tetragonal stability. In addition, Y2O3 substitution in CeO2-ZrO2 increases the hardness, while it decreases the fracture toughness.  相似文献   

8.
Both tetragonal ( t ) and monoclinic ( m ) ZrO2 particles in ZrO2-toughened Al2O3 can give rise to toughening. In the stress field of propagating cracks, the t -ZrO2 particles can undergo the stress-induced t → m transformation, and the residual stresses around already-transformed m -ZrO2 particles can cause microcracking. The t -ZrO2 particles transformed in crack tip stress fields do not, however, also cause appreciable microcracking. The toughening increments via these distinct mechanisms are comparable. It appears that optimally fabricated Zr02-toughened Al2O3's should contain a mixture of t - and m -ZrO2.  相似文献   

9.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   

10.
Based on experimental and modeling studies, the rate of increase in the martensite start temperature M s for the tetragonal-to-monoclinic transformation with increase in zirconia grain size is found to rise with decrease in ZrO2 content in the zirconia-toughened alumina ZTA system. The observed grain size dependence of M s can be related to the thermal expansion mismatch tensile (internal) stresses which increase with decrease in zirconia content. The result is that finer zirconia grain sizes are required to retain the tetragonal phase as less zirconia is incorporated into the alumina, in agreement with the experimental observations. At the same time, both the predicted and observed applied stress required to induce the transformation are reduced with increase in the ZrO2 grain size. In addition, the transformation-toughening contribution at temperature T increases with increase in the M s temperature brought about by the increase in the ZrO2 grain size, when T > M s. In alumina containing 20 vol% ZrO2 (12 mol% CeO2), a toughness of ∼10 MPa. √m can be achieved for a ZrO2 grain size of ∼2 μm ( M s∼ 225 K). However, at a grain size of ∼2 μm, the alumina–40 vol% ZrO2 (12 mol% CeO2) has a toughness of only 8.5 MPa. √m ( M s∼ 150 K) but reaches 12.3 MPa. ∼m ( M s∼ 260 K) at a grain size of ∼3 μm. These findings show that composition (and matrix properties) play critical roles in determining the ZrO2 grain size to optimize the transformation toughening in ZrO2-toughened ceramics.  相似文献   

11.
The stress-induced martensitic transformation of t -ZrO2 precipitates in a ternary MgO-Y2O3-ZrO2 alloy has been studied in situ in the transmission electron microscope. The transformation occurs autocatalytically and takes place by piecewise growth of two twin-related m -ZrO2 variants. Unloading causes retransformation of partially transformed precipitates, but this reverse ( m → t ) transformation of fully transformed precipitates only occurs on heating. The martensitic transformation in this system is clearly thermoelastic .  相似文献   

12.
A structural phase transition between the cubic (space group, Fm 3 m) and tetragonal (space group, P 42 /nmc) phases in a zirconia–ceria solid solution (Zr1−xCexO2) has been observed by Raman spectroscopy. The cubic–tetragonal ( c–t" ) phase boundary in compositionally homogeneous samples exists at a composition X0 (0.8 < X0 < 0.9) at room temperature, where t " is defined as a tetragonal phase whose axial ratio c/a equals unity. The axial ratio c/a decreases with an increase of ceria concentration and becomes 1 at a composition X'0 (0.65 < X'0 < 0.7) at room temperature. The sample with a composition between X0 and X'0 is t " ZrO2. By Raman scattering measurements at high temperatures, the tetragonal ( t" ) → cubic and cubic → tetragonal phase transitions occur above 400°C in Zr0.2 Ce0.8O2 solid solution.  相似文献   

13.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

14.
Aqueous mixtures of either zirconium acetate or zirconium nitrate and magnesium nitrate were dried and subsequently pyrolyzed at fast heating rates (upquenching) to form metastable crystalline phases of ZrO2 with various degrees of MgO supersaturation. The crystallization temperature was determined to be 380°C for the zirconium acetate, and 270°C for the zirconium nitrate at a heating rate of 5°C/min. The crystalline structures were characterized as a function of MgO content and thermal history for specimens containing 0 to 30 mol% MgO. Upquenching to 900°C, where monoclinic ( m ) ZrO2 and MgO are the equilibrium phases, yielded single-phase tetragonal ( t ) ZrO2 (<8 mol% MgO), single-phase cubic ( c ) ZrO2 (9 to 17 mol% MgO), and two-phase c -ZrO2+ MgO structures (>17 mol% MgO). The composition for which T 0( t/c ) = 900°C was estimated as 9 ± 1 mol% MgO. Compositions crystallizing as metastable t -ZrO2 (<8 mol% MgO) partitioned at higher temperatures and/or longer times into two-phase mixtures, following the general sequence t → t + m → m + MgO. Similarly, compositions forming metastable c -ZrO2 (10 to 30 mol% MgO) partitioned in the following sequence: c → c + t + MgO → t + MgO → t + m + Mgo → m + Mgo. The initial phase selection and subsequent partitioning sequence are discussed in light of phase hierarchies predicted from thermodynamic concepts and kinetic constraints which are introduced by the solute partitioning required to achieve equilibrium.  相似文献   

15.
Phase equilibria in the system ZrO2─InO1.5 have been investigated in the temperature range from 800° to 1700°C Up to 4 mol%, InO1.5 is soluble in t -ZrO2 at 1500°C. The martensitic transformation temperature m → t of ZrO2 containing InO1.5 is compared with that of ZrO2 solid solutions with various other trivalent ions with different ionic radii. The diffusionless c → t ' A phase transformation is discussed. Extended solid solubility from 12.4 ± 0.8 to 56.5 ± 3 mol% InO1.5 is found at 1700°C in the cubic ZrO2 phase. The eutectoid composition and temperature for the decomposition of c -ZrO2 solid solution into t -ZrO2+InO1.5 solid solutions were determined. A maximum of about 1 mol% ZrO2 is soluble in bcc InO1.5 phase. Metastable supersaturation of ZrO2 in bcc InO 1.5 and conditions for phase separation are discussed.  相似文献   

16.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

17.
In the ZrO2-Cr2O3 system, metastable t -ZrO2 solid solutions containing up to 11 mol% Cr2O3 crystallize at low temperatures from amorphous materials prepared by the hydrazine method. The lattice parameter c decreases linearly from 0.5149 to 0.5077 nm with increased Cr2O3 content, whereas the lattice parameter a is a constant value ( a = 0.5077 nm) regardless of the starting composition. At higher temperatures, transformation (decomposition) of the solid solutions proceeds in the following way: t (ss)→ t (ss) + m + Cr2O3→ m + Cr2O3. Above 11 mol% Cr2O3 addition, c-ZrO2 phases are formed in the presence of Cr2O3. The t -ZrO2 solid solution powders have been characterized for particle size, shape, and surface area. They consist of very fine particles (15–30 nm) showing thin platelike morphology. Dense ZrO2(3Y)-Cr2O3 composite ceramics (∼99.7% of theoretical) with an average grain size of 0.3 μm have been fabricated by hot isostatic pressing for 2 h at 1400°C and 196 MPa. Their fracture toughness increases with increased Cr2O3 content. The highest K Ic value of 9.5 MPa·;m1/2 is achieved in the composite ceramics containing 10 mol% Cr2O3.  相似文献   

18.
The ionic conductivity of the ceria-samaria (CeO2-Sm2O3) system is higher than that of yttria-stabilized zirconia and other CeO2-based oxides. In this study, a small amount of alkali-element-doped CeO2-Sm2O3 solid solution was prepared. This solid solution was characterized by measuring the powder density and the chemical composition. Moreover, its electrochemical properties were investigated in the temperature range from 700° to 1000°C. It was found that a small amount of alkali-element-doped CeO2 solid solution enhanced the ionic conductivity. The power density of an oxygen-hydrogen fuel cell for alkali-element-doped CeO2-Sm2O3 ceramics exhibited high values at low temperatures such as 700° to 800°C. It is concluded that the improved fuel cell performance can be attributed to the high stability of this composition in the fuel atmosphere.  相似文献   

19.
Thermal expansion of CeO2, Ho2O8, and Lu2O3 was determined from 100° to 300°K by a back-reflection X-ray technique. The variation of thermal expansion with temperature is the same as that of specific heat for CeO2 and Ho2O3; these oxides obey the Grueneisen model of thermal expansion in the temperature range studied.  相似文献   

20.
Zr–Hf interdiffusion was studied in the temperature range of 1650° to 1850°C in air for polycrystalline fluorite-cubic systems of 90CeO2·10(Zr1- x Hf x )O2 and 60CeO2·40(Zr1- x Hf x )O2. Lattice and grain-boundary diffusion parameters were calculated from the Zr–Hf concentration distributions by using the grain-boundary diffusion equation of Oishi and Ichimura. The cation iattice diffusivity was close to that in the fluorite-cubic Y2O2-ZrO2 solid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号