首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A newly developed severe plastic deformation(SPD) technique, i.e. repetitive upsetting(RU), is employed to improve the strength and ductility of a Mg-Gd-Y-Zr alloy. During the RU processing, dynamic recrystallization occurs in the Mg alloy, which leads to a significant grain refinement from 11.2 μm to 2.8 μm.The yield strength(YS), ultimate tensile strength(UTS) and elongation increase simultaneously with increasing RU passes. The microstructural evolution is affected by processing temperatures. Dynamic recrystallization prevails at low temperatures, while dynamic recovery is the main effect factor at high temperatures. Texture characteristics gradually become random during multiple passes of RU processing,which reduces the tension-compression asymmetry of the Mg-Gd-Y-Zr alloy.  相似文献   

2.
本文定量地研究了Mg-10Gd-3Y-0.5Zr(GW103K)合金在350℃~450℃及10~(-4)s~(-1)~10~(-1)s~(-1)热压缩条件下的动态析出规律。结果表明:固溶处理后的合金在450℃下压缩时,晶内和晶界均无析出相产生,在350℃~400℃热压缩时,有大量不规则颗粒状的析出相产生;析出相主要是β相,平均成分为Mg5.5(Gd_(0.73)Y_(0.27)),大部分分布于再结晶小晶粒的晶界处;析出相的尺寸随温度升高和应变速率的降低而增大,400℃、10~(-4)s~(-1)变形条件下的析出相尺寸能达到1μm以上,而350℃、10~(-4)s~(-1)变形条件下的析出相尺寸在100nm左右;析出相的体积分数随应变量呈非线性增加。不同的变形条件下,析出相体积分数增长趋势不同。350℃下的析出相体积分数在应变量为1.10时达到了3.5%。热压缩过程中,动态析出阻碍位错运动,抑制再结晶晶粒长大,对细化再结晶晶粒起到重要作用。  相似文献   

3.
本文主要研究了新型稀土Mg-10Gd-8Y-1.5Nd-0.5Zr的挤压工艺.结果表明:稀土的加入使得镁合金的变形温度范围更窄.变形量对稀土镁合金的挤压工艺过程具有重要的影响,但温度才是决定该种稀土镁合金变形成功的关键.该种新型稀土镁合金的最适合挤压温度为310-330℃.  相似文献   

4.
目的 研究挤压比对热挤压制备的Mg-9Gd-4Y-2Zn-0.5Zr(VW94)镁合金微观组织、拉伸性能和抗腐蚀性的影响,并揭示挤压比对组织和性能演变的影响机制。方法 用挤压比为16和35的热挤压工艺制备了Mg-9Gd-4Y-2Zn-0.5Zr(VW94)镁合金,通过光镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等手段表征并分析了不同挤压比下的微观组织,进一步通过拉伸测试和电化学测试评估合金的力学性能和腐蚀速率,并通过SEM表征断口形貌和腐蚀形貌,分析其断裂方式和腐蚀机制。结果 挤压比的大小并不会影响镁合金的相成分,镁合金主要由α-Mg基体及晶界处的LPSO相组成。当挤压比为16时,第二相数量更多,平均晶粒尺寸更小;当挤压比增大到35时,合金的再结晶程度更高,其晶粒尺寸分布更加均匀。性能表征结果发现,挤压比为16的VW94合金的力学性能更优,其抗拉强度及伸长率分别达到376.3MPa和13.3%,但是挤压比为35的VW94合金的耐腐蚀性能更好。结论 挤压比虽然不会影响相的种类,但是会影响第二相的含量和晶粒尺寸,从而进一步影响拉伸性能和腐蚀速率,因此可以通过优化挤压比协同...  相似文献   

5.
A new kind of Mg-4.0 wt.%Zn-0.5 wt.%Ca alloy is fabricated by casting and hot extrusion for used as a high performance structure material as well as a biomaterial. In the as-cast alloy, the average grain size of the α-Mg is 120-150 µm and the precipitated second phases are distributed uniformly in α-Mg grains. The as-cast Mg-4.0 wt.%Zn-0.5 wt.%Ca alloy shows a good balance between the tensile strength (211 MPa) and ductility (17% in elongation). After hot extrusion at 593 K, the second phase is greatly refined and the average grain size of the α-Mg is reduced to 8-12 μm which is resulted from dynamic re-crystallization during hot extrusion. In this case, it exhibits a high tensile strength (273 MPa) and a high ductility (34% in elongation) at room temperature.  相似文献   

6.
The elevated-temperature plasticity and flow behavior of an Er-modified, heat-resistant ZA73 alloy was evaluated by thermal simulation. The results showed that the addition of Er to ZA73 alloy notably improves the deformability and higher strain rate and temperature favors hot deformation. Bars with sound surface quality were successfully extruded at 350 °C and a strain rate of ~ 0.1 s− 1. Furthermore, dynamic precipitation of nano-sized spherical τ phase was found to occur uniformly in the α-Mg matrix during hot extrusion, which is considered helpful to both strength and plasticity enhancement. The yield strength and ultimate tensile strength of the as-extruded bars reached 240-265 MPa and 355-360 MPa, respectively, while maintaining a large elongation rate of 18-19.5%.  相似文献   

7.
采用自制的90°模具,经Bc路径在温度为300℃下研究对比了铸态及不同道次的等通道挤压(ECAP)态AZ81镁合金微观组织和力学性能.结果表明ECAP随着挤压道次的增加,AZ81镁合金显微组织和力学性能发生显著变化.当挤压到4道次,平均晶粒尺寸由原来铸态的145um细化为9.6um,拉伸断口韧窝明显增多;抗拉强度从180 MPa提高到306 MPa,延伸率和硬度分别达到15.8%和142HL.分析表明,AZ81镁合金在高温挤压过程中Mg17Al12相粒子被破碎,并部分溶入基体,$-Mg基体与%-Mg17Al12相互相阻碍其晶粒长大,获得细小晶粒组织.  相似文献   

8.
Cold extrusion of AZ31 magnesium alloy sheets was studied in this paper. Microstructure and texture distributions of the as-extruded sheet were investigated by electron backscattered diffraction (EBSD) method. The grains were significantly refined and the average grain size was 1.6 μm. Dynamic recrystallization has taken place during the extrusion process, which resulted in the high frequency of high angle grain boundaries in the sheet. After the cold extrusion, a weak double-peak type basal texture was formed. The formation of the texture was ascribed to the non-basal <c + a> slips. Tensile tests revealed that mechanical properties were enhanced due to grain size refinement, but mechanical anisotropy was obvious. It is believed that mechanical anisotropy was related to the splitting of basal texture.  相似文献   

9.
Microstructure, mechanical properties and electrical conductivity of industrial Cu-0.5% alloy subjected to equal channel angular pressing (ECAP) by route A and cold rolling with and without aging treatment were investigated. The lamellar grains in thickness of 100 nm were obtained after eight ECAP passes. They were not further pancake shaped, but fragmentary and obtained less sharp boundaries with more dislocations in addition to cold rolling. After aging at 450 °C for 1 h, high density of dislocations and some coarse grains were observable after ECAP and the additional cold rolling, respectively. The tensile tests show that tensile strength arrived at 460 MPa and 484 MPa after four and eight passes of ECAP, respectively, the corresponding tensile strength increased to 570 MPa and 579 MPa after the additional cold rolling. However, the electrical conductivity was not more than 35% IACS. It was proved that four passes of ECAP followed by 90% cold rolling and aging at 450 °C for 1 h offered a short process for Cu-0.5%Cr alloy to balance the paradox of high strength and electrical conductivity, under which the tensile strength 554 MPa, elongation to failure 22% and electrical conductivity 84% of IACS could be obtained. The high strength was explained by precipitation strengthening and fine grain strengthening.  相似文献   

10.
A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5 Zr alloy has been fabricated by multidirectional forging(MDF)after analyzing its compression behavior.The as-homogenized alloy exhibits a high activation energy Q of deformation(~285 kJ/mol).The size of DRXed grains after compression tends to decrease as the Z-H parameter(Z)increases,showing a grain size exponent m of~4.0.Lamellar LPSO phases,kinking deformation,and bimodal microstructure are detected at the relatively low compression temperature of 350 and 400℃,while sufficient DRX can be achieved at 500℃,accompanied by the dissolution of lamellar LPSO.According to the processing maps,MDF was successfully conducted under an appropriate condition.After peak-aged at 200℃for 78 h,the MDFed billet exhibits a tensile yield strength(TYS)of 331 and 305 MPa at room temperature and 200 C,respectively.The high strength mainly results from the combination of fine grains,low Schmid factor for basal slip,sufficient β'ageing precipitates,and direc-tionally arranged interdendritic LPSO phases,etc.This paper provides a feasible way for the fabrication of high-performance,low-RE-content,and large-scale Mg components for industrial production.  相似文献   

11.
Very high-cycle fatigue behaviors of extruded Mg-12Gd-3Y-0.5Zr (GW123k) magnesium alloy have been investigated and compared to that of conventional extruded AZ31 magnesium alloy. Typical post-fatigue microstructure and surface morphology features are presented for both the GW123k and the AZ31 alloy in order to stand out the uniqueness of GW123k alloy. Respective fatigue damage mechanisms for both alloys were also proposed in accordance. It is found that GW123k alloy contains a large amount of precipitated particles and possesses a relatively weak texture, which give rise to its much relieved tension-compression yield asymmetry and enhanced fatigue failure resistance. The much homogenized deformation mechanism in GW123k alloy is considered the underline reason for the improvement of material's fatigue performance.  相似文献   

12.
In this study, an approach is proposed to improve the microstructure and mechanical properties of Mg-4Zn-0.5Zr alloy by combining trace Cu and rare earth Ce addition. The results showed that Cu and Ce additions led to obvious grain refinement and the formation of Mg-Zn-Cu and Mg-Zn-Ce phases. The Mg-Zn-Ce phase was identified to have an orthorhombic structure. The length of the [0001]α rods in the Cu-containing alloys remarkably decreased. The yield strength increased slightly after Cu and Ce co-addition, which was attributed to grain refinement and precipitation strengthening. The coarse Mg-Zn-Ce phase distributed at the grain boundaries would reduce the ductility by promoting crack propagation during tensile processes.  相似文献   

13.
《材料科学技术学报》2019,35(9):1860-1868
Hot isostatic pressing (HIP) was applied to Mg-6Gd-3Y-0.5Zr (GW63) alloy to reduce shrinkage porosity, thus, to enhance the integrity and reliability of castings. During HIP process, shrinkage porosity was closed by grain compatible deformation and subsequent diffusion across the bonding interface. The amount of initial shrinkage porosity was the key factor for shrinkage porosity closure. HIP was testified to be effective on shrinkage porosity reduction in GW63 alloy due to its relatively narrow solidification range and resultant low content of initial shrinkage porosity in most sections, leading to higher tensile properties both in as-cast and cast-T6 condition. The improvement in tensile properties was mainly because of shrinkage porosity reduction and resultant effective rare-earth (RE) elements homogenization and precipitation strengthening.  相似文献   

14.
Microstructure and mechanical properties of an extruded Mg-2Dy-0.5Zn(at.%) alloy during isothermal ageing at 180 ℃ were investigated.Microstructure of the as-extruded alloy is mainly composed of α-Mg phase,14H long period stacking order(LPSO) phase and small amounts of(Mg,Zn)_xDy particle phases.During ageing,the 14H LPSO phase forms and develops and its volume fraction increases with increasing ageing time.Tensile test showed that the peak-aged alloy exhibits similar yield and ultimate tensile strengths and elongation to failure at room temperature,100 ℃ and 200 ℃,but excellent elevated temperature strengths at 300 ℃ as compared to the as-extruded and over-aged alloys.The analysis showed that the excellent elevated temperature strengths of the peak-aged alloy are attributed to the LPSO phase strengthening and the grain refinement strengthening,and the role of the LPSO strengthening is related to not only its amount,but also its morphology.  相似文献   

15.
Commercial AA7050 aluminium alloy in the solution heat-treated condition was processed by ECAP through routes A and BC. Samples were processed in both room temperature and 150 °C, with 1, 3, and 6 passes. The resulting microstructure was evaluated by optical microscopy (OM) and transmission electron microscopy (TEM). Only one pass was possible at room temperature due to the low ductility of the alloy under this condition. In all cases, the microstructure was refined by the formation of deformation bands, with dislocation cells and subgrains inside these bands. The increase of the ECAP temperature led to the formation of more defined subgrain boundaries and intense precipitation of spherical-like particles, identified as η′ and η phases. After the first pass, an increase in the hardness was observed, when compared with the initial condition. After 3 passes the hardness reached a maximum value, higher than the values typically observed for this alloy in the overaged condition. The samples processed by route BC evolved to a more refined microstructure. ECAP also resulted in significant strength improvement, compared to the alloy in the commercial overaged condition.  相似文献   

16.
17.
The microstructure and mechanical properties of an indirect-extruded Mg-8Sn-1Al-1Zn (TAZ811) alloy were investigated and compared with those of a commercial Mg-3Al-1Zn (AZ31) alloy. In the extruded condition, the TAZ811 alloy shows a much smaller grain size but a stronger basal texture than the AZ31 alloy. In addition, the TAZ811 alloy contains fine Mg2Sn particles in the microstructure, whereas the AZ31 alloy reveals relatively coarse and sparse Al-Mn particles. The TAZ811 alloy showed tensile and compressive strengthening as well as a reduction in yield asymmetry between tension and compression, which is mainly due to grain refinement and the presence of fine Mg2Sn particles.  相似文献   

18.
Mg-5Gd-4Y-0. 3Zr 合金组织和力学性能研究   总被引:2,自引:2,他引:0       下载免费PDF全文
目的研究均匀化、挤压及时效热处理对Mg-5Gd-4Y-0.3Zr合金组织和力学性能的影响。方法制备了Mg-5Gd-4Y-0.3Zr合金铸棒,并进行了均匀化处理和热挤压处理。对不同状态的试样进行了拉伸试验,观察了金相显微组织,采用X射线衍射方法进行了结构分析。结果铸态合金组织主要由α-Mg基体和第二相Mg5(Gd,Y)组成;经过均匀化处理后,合金的第二相发生了完全回溶,合金的力学性能得到了提升;合金经挤压后,组织得到了明显细化,在200℃保温60 h得到了强度的最大值,抗拉强度、屈服强度和伸长率分别为423.0 MPa,335.0 MPa与9.0%。结论Mg-5Gd-4Y-0.3Zr合金既保证了低成本,又具有优良的力学性能,适合推广应用。  相似文献   

19.
The microstructure evolution and mechanical properties of Mg-6Zn-2Gd-0.5Zr alloy during homogenization treatment were investigated. The as-cast alloy was found to be composed of dendritic primary α-Mg matrix, α-Mg + W (Mg3Zn3Gd2) eutectic along grain boundaries, and icosahedral quasicrystalline I (Mg3Zn6Gd) phase within α-Mg matrix. During homogenization process, α-Mg + W (Mg3Zn3Gd2) eutectic and I phase gradually dissolved into α-Mg matrix, while some rod-like rare earth hydrides (GdH2) formed within α-Mg matrix. Both the tensile yield strength and the elongation showed a similar tendency as a function of homogenization temperature and holding time. The optimized homogenization parameter was determined to be 505 °C for 16 h according to the microstructure evolution. Furthermore, the diffusion kinetics equation of the solute elements derived from the Gauss model was established to predict the segregation ratio of Gd element as a function of holding time, which was proved to be effective to evaluate the homogenization effect of the experimental alloy.  相似文献   

20.
In this paper, mechanical properties of a deformed Al-Si eutectic alloy processed by isothermal extrusion at temperature from 573 K to 773 K with reduction ratio from 25% to 85% were investigated at ambient temperature. The results showed that a banded structure composed of matrix region and accumulation region of second phase particles was formed and a few cracks were generated in particles and evolved to voids among particles. The tensile strength of test specimens ranged from 250 MPa to 400 MPa and was directly related with temperature from 623 K to 773 K. The elongation of test specimens ranged from 2.8% to 13.1%, and had a peak value at 673 K under each section reduction ratio. A reduction in elongation occurred at section reduction ratio larger than 75% because of particle bands splitting aluminum matrix severely. The effect of temperature on mechanical properties was more significant than that of section reduction ratio. Excellent balance between strength and ductility can be obtained by extrusion at temperature 623-723 K and section reduction ratio 40-70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号