首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processing and mechanical behaviors of Al2O3-xwt.%SiC (x = 1, 2, 5, ASx) nano-composites prepared by the in situ synthesis of SiC from polycarbosilane (PCS) were investigated. The composites were densified by hot pressing. The microstructure and mechanical properties of the sintered composites were analyzed. The results showed that a fully dense structure was obtained when a few nano-SiC were doped and that the fracture toughness and strength were highly improved compared with those of monolithic Al2O3. The fracture toughness reached 5.1 MPa m1/2 in AS2 composite. The maximum flexural strength was 516 MPa obtained in AS1 composite.  相似文献   

2.
A ZrB2-based composite containing 20 vol.% nanosized SiC particles (ZSN) was fabricated at 1900 °C for 30 min under a uniaxed load of 30 MPa by hot-pressing. The microstructure and mechanical properties of the composite were investigated. It was shown that the grain growth of ZrB2 matrix was effectively suppressed by submicrosized SiC particles located along the grain boundaries. In addition, the mechanical properties of ZSN composite were strongly improved by incorporating the nanosized SiC particles into a ZrB2 matrix, especially for flexural strength (925 ± 28 MPa) and fracture toughness (6.4 ± 0.3 MPa•m1/2), which was much higher than that of monolithic ZrB2 and ZrB2-based composite with microsized SiC particles, respectively. The formation of intragranular nanostructures plays an important role in the strengthening and toughening of ZrB2 ceramic.  相似文献   

3.
The processing and mechanical behavior of Al2O3xSiC (–C) (x = 1, 2, 5, 10 wt.%, ASx and ASCx) composites prepared by in situ reaction synthesis SiC from polycarbosilane (PCS) were investigated. The composites were densified by hot pressing. The pyrolysis process of PCS, microstructure, phase structure and mechanical properties of sintered composites were analyzed. Fully dense structure was obtained, and it was found that the fracture toughness and strength were highly improved compared with monolithic Al2O3. The fracture toughness reached 5.1 MPa m1/2 in 1 wt.%SiC composite ASC1. AS1 showed 516 MPa of flexural strength.  相似文献   

4.
High-purity and dense Cr2AlC has been successfully fabricated by hot-pressing, using Cr, Al and graphite as raw materials. Delamination, kink bands, monolamellar kink, transgranular crack and transgranular fracture of bulk Cr2AlC are found during the room-temperature test. The density, Vickers hardness, flexural strength, Young's modulus, compressive strength and fracture toughness of the Cr2AlC are 5.17 g/cm3, 4.9 GPa, 469 ± 27 MPa, 282 GPa, 949 ± 22 MPa and 6.22 ± 0.26 MPa m1/2, respectively. The strength of Cr2AlC could be greatly improved by second phase of Cr7C3. And the slipping of basal planes and slip system cold be hindered by Cr7C3, thus resulting in a lower toughness.  相似文献   

5.
Three-dimensional (3D) silicon carbide (SiC) matrix composites reinforced with KD-I SiC fibres were fabricated by precursor impregnation and pyrolysis (PIP) process. The fibre-matrix interfaces were tailored by pre-coating the as-received KD-I SiC fibres with PyC layers of different thicknesses or a layer of SiC. Interfacial characteristics and their effects on the composite mechanical properties were evaluated. The results indicate that the composite reinforced with as-received fibre possessed an interfacial shear strength of 72.1 MPa while the composite reinforced with SiC layer coated fibres had a much higher interfacial shear strength of 135.2 MPa. However, both composites showed inferior flexural strength and fracture toughness. With optimised PyC coating thickness, the interface coating led to much improved mechanical properties, i.e. a flexural strength of 420.6 MPa was achieved when the interlayer thickness is 0.1 μm, and a fracture toughness of 23.1 MPa m1/2 was obtained for the interlayer thickness of 0.53 μm. In addition, the composites prepared by the PIP process exhibited superior mechanical properties over the composites prepared by the chemical vapour infiltration and vapour silicon infiltration (CVI-VSI) process.  相似文献   

6.
Three-dimensional (3D) silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites, employing KD-1 SiC fibers (from National University of Defense Technology, China) as reinforcements, were fabricated by a combining chemical vapor infiltration (CVI) and vapor silicon infiltration (VSI) process. The microstructure and properties of the as prepared SiCf/SiC composites were studied. The results show that the density and open porosity of the as prepared SiCf/SiC composites are 2.1 g/cm3 and 7.7%, respectively. The SiC fibers are not severely damaged during the VSI process. And the SiC fibers adhere to the matrix with a weak interface, therefore the SiCf/SiC composites exhibit non-catastrophic failure behavior with the flexural strength of 270 MPa, fracture toughness of 11.4 MPa·m1/2 and shear strength of 25.7 MPa at ambient conditions. Moreover, the flexural strength decreases sharply at the temperature higher than 1200 °C. In addition, the thermal conductivity is 10.6 W/mk at room temperature.  相似文献   

7.
Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2 and Cr2O3 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized, and the results showed that the Rockwell hardness, flexural strength and fracture toughness of the composites increased as the Cr2O3 content increased. When the Cr2O3 content was 2.5 wt%, the flexural strength and the fracture toughness attained peak values of 925 MPa and 8.55 MPa m1/2, respectively. This improvement of mechanical properties was due to the more homogeneous and finer microstructure developed from the addition of Cr2O3 and an increase in the ratio of α2-Ti3Al to γ-TiAl matrix phases.  相似文献   

8.
A composite of O′SiAlON (Si2-xAlxN2-xO1+x, with x 0.14) reinforced with 20 vol.% SiC monofilaments was fabricated by hot-pressing, at 1600°C, for 2 h under 34 MPa pressure. The mechanical and interfacial properties of the composites, as-fabricated as well as post-oxidized, were, investigated. The composite exhibited a significant improvement in ultimate flexure strength (640 MPa) and work of fracture (42 kJ m−2) compared with that (350 MPa and 1.8 kJ m−2, respectively) of the monolithic material. These mechanical properties were slightly increased after the composite was heat treated for 24 h in air at 1200 and 1300°C. However, the composite exhibited a significant degradation in ultimate strength, while the work of fracture (WOF) remained unchanged after exposure in air at temperatures beyond 1400°C. The as-fabricated composite revealed a low interfacial shear strength (6.2 MPa) and a frictional sliding stress (3.2 MPa). After the composite was oxidized at elevated temperatures, the interfacial bonding and sliding stresses were reduced to noticeable extents, resulting from the degradation of the carbon coating layer of the SiC monofilaments.  相似文献   

9.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

10.
The grain size and density of the sintered (Zn1 − xAlxO)mIn2O3 bodies decreased with the small Al2O3 content (≤ 0.012), and then increased gradually by further increasing the Al2O3 content. The addition of Al for Zn in the (ZnO)mIn2O3 led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient. This indicates that the power factor was significantly enhanced by adding Al for Zn. The thermoelectric power factor was maximized to 1.67 × 10− 3 W m− 1 K− 2 at 1073 K for the (Zn0.992Al0.008O)mIn2O3 sample.  相似文献   

11.
Pb1-xBixTiO3 (x = 0.0-0.1) compounds were prepared to study the unique dopant effect of bismuth in PbTiO3. Their thermal expansions and structures were investigated by high-temperature X-ray diffraction and X-ray Rietveld method. The results indicated that Bismuth substitution evidently weakened the tetragonality of PbTiO3 solid solution, but increased the spontaneous polarization. Both the enhanced spontaneous polarization and the decreased tetragonality led to small volume shrinkage with temperature rising, where the average volumetric thermal expansion coefficient changed from − 1.99 × 10− 5/°C for pure PbTiO3 to − 0.56 × 10− 5/°C for Pb0.90Bi0.10TiO3. The Curie point of Pb1 − xBixTiO3 was slightly raised compared to PbTiO3 and permitted one to use it in a wide temperature range.  相似文献   

12.
In the present work, the thermal shock resistance of the ZrB2–SiC–ZrC ceramic was estimated by the water quenching method and the flexural strength of the quenched specimen was measured. The measured critical temperature difference of the ZrB2–SiC–ZrC ceramic was significantly greater than that of the ZrB2–15 vol.% SiC ceramic. The improvement in thermal shock resistance was attributed to its higher fracture toughness (6.7 MPa m1/2) and lower flexural strength (526 MPa) relative to the ZrB2–15 vol.% SiC ceramic (4.1 MPa m1/2 and 795 MPa) based on Griffith fracture criterion. Furthermore, the temperature and thermal stress distributions in the specimen during instantaneous water quenching were simulated by Finite element analysis.  相似文献   

13.
Ti-added amorphous SiOx films were sputter-deposited into stacks of Pt/SiOx/Pt and Cu/SiOx/Pt. Optimally prepared Pt/SiOx/Pt exhibits unipolar resistive switching over 102 cycles, resistance ratio ∼ 103, yet wide voltage distribution (2 ∼ 7 V for SET, 0.5 ∼ 1.5 V for RESET). Cu/SiOx/Pt exhibit similar endurance, resistance ratio up to 107, and SET and RESET voltages reduced to 1.8 ∼ 4.2 V and 0.5 ∼ 1 V, respectively. Cu diffusion into SiOx at the virgin state may play a role in resistive switching of Cu/SiOx/Pt stack besides of filament conduction. Ti-added amorphous SiOx films incorporating Cu electrode shows potential for resistive memory.  相似文献   

14.
Li3 − xFe2 − xTix(PO4)3/C (x = 0-0.4) cathodes designed with Fe doped by Ti was studied. Both Li3Fe2(PO4)3/C (x = 0) and Li2.8Fe1.8Ti0.2(PO4)3/C (x = 0.2) possess two plateau potentials of Fe3+/Fe2+ couple (around 2.8 V and 2.7 V vs. Li+/Li) upon discharge observed from galvanostatic charge/discharge and cyclic voltammetry. Li2.8Fe1.8Ti0.2(PO4)3/C has higher reversibility and better capacity retention than that of the undoped Li3Fe2(PO4)3/C. A much higher specific capacity of 122.3 mAh/g was obtained at C/20 in the first cycle, approaching the theoretical capacity of 128 mAh/g, and a capacity of 100.1 mAh/g was held at C/2 after the 20th cycle.  相似文献   

15.
A ZrB2 ceramic containing 20 vol.% SiC and 10 vol.% graphite flake (ZrB2-SiC-G) was fabricated by hot pressing. It was shown that the fracture toughness was improved due to the introduction of graphite flake, whereas the flexure strength and hardness decreased slightly. The fracture toughness of ZrB2-SiC-G composite was 6.1 ± 0.3 MPa·m1/2, which was much higher than that of monolithic ZrB2, ZrB2-SiC composite and similar ZrB2-SiC-C composite. The toughening mechanisms are crack deflection and branching as well as stress relaxation near the crack tip. The results here pointed to a potential method for improving fracture toughness of ZrB2-based ceramics.  相似文献   

16.
The optical and electrical properties of vapour phase grown crystals of diluted magnetic semiconductor Zn1 − xCrxTe were investigated for 0 ≤ x ≤ 0.005. The diffuse reflectance spectra exhibited an increase in the fundamental absorption edge (E0) with composition x and were also dominated by a broad absorption band around 5200 cm− 1 arising from 5T2 → 5E transition. The 5T2 and 5E levels originate from the crystal field splitting of the 5D free ion in the ground state. The electrical resistivity measurements revealed semiconducting behaviour of the samples with p-type conductivity in the temperature range of 200-450 K.  相似文献   

17.
Densification and mechanical properties (fracture toughness, flexural strength and hardness) of SiC–TiB2 composite were studied. Pressureless sintering experiments were carried out on samples containing 0–50 vol% of TiB2 created by in situ reaction between TiO2, B4C and carbon. Al2O3 and Y2O3 were used as sintering additives to create liquid phase and promote densification at sintering temperature of 1940 °C. The sintered samples were subsequently heat treated at 1970 °C. It was found that the presence of TiB2 serves as an effective obstacle to SiC grain growth as well as crack propagation thus increasing both strength and fracture toughness of sintered SiC–TiB2 composite. The subsequent heat treatment of sintered samples promoted the elongation of SiC matrix and further improved mechanical properties of the composite. The best mechanical properties were measured in heat-treated samples containing 12–24 vol% TiB2. The maximum flexural strength of ∼600 MPa was obtained in samples with 12 vol% TiB2 whereas the maximum fracture toughness of 6.6 MPa m1/2 was obtained in samples with 24 vol% TiB2. Typical microstructures of samples with the mentioned volume fractions of TiB2 consist of TiB2 particles (<5 μm) uniformly dispersed in a matrix of elongated SiC plates.  相似文献   

18.
Fabrication of Mg2Si1−xGex (x = 0-1.0) was carried out using a spark plasma sintering technique initiated from melt-grown polycrystalline Mg2Si1−xGex powder. The thermoelectric properties were evaluated from RT to 873 K. The power factor of Mg2Si1−xGex with higher Ge content (x = 0.6-1.0) tends to decrease at higher temperatures, and the maximum value of about 2.2 × 10− 5 Wcm− 1K− 2 was observed at 420 K for Mg2Si and Mg2Si0.6Ge0.4. The coexistence of Si and Ge gave rise to a decrease in the thermal conductivity in the Mg2Si1−xGex. The values close to 0.02 Wcm− 1K− 1 were obtained for Mg2Si1−xGex (x = 0.4-0.6) over the temperature range from 573 to 773 K, with the minimum value being about 0.018 Wcm− 1K− 1 at 773 K for Mg2Si0.4Ge0.6. The maximum dimensionless figure of merit was estimated to be 0.67 at 750 K for samples of Mg2Si0.6Ge0.4.  相似文献   

19.
Lead-free thick film negative temperature coefficient (NTC) thermistors based on perovskite-type BaCoIIxCoIII2xBi1 − 3xO3 (x ≤ 0.1) were prepared by mature screen-printing technology. The microstructures of the thick films sintered at 720 °C were examined by X-ray diffraction and scanning electron microscopy. The electrical properties were analyzed by measuring the resistance-temperature characteristics. For the BaBiO3 thick films, the room-temperature resistivity is 0.22 MΩ cm, while the room-temperature resistivity is sharply decreased to about 3 Ω cm by replacing of Bi with a small amount of Co. For compositions 0.02 ≤ x ≤ 0.1, the values of room-temperature resistivity (ρ23), thermistor constant (B25/85) and activation energy are in the range of 1.995-2.975 Ω cm, 1140-1234 K and 0.102-0.111 eV, respectively.  相似文献   

20.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号