首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In situ high resolution transmission electron microscopy investigations were performed on sub-10-nm Au crystals. The effects of tensile loading direction and crystal size on the deformation mechanism of Au crystals were analysed. For the Au crystals with a width below 2 nm, the surface atom diffusion with a phenomenon of layer by layer peeling is the main deformation mechanism and the tensile loading direction plays negligible effect. For the Au crystals with a width over 7 nm, the dislocations generated form surface and gliding into crystal dominate the plastic deformation and the tensile loading direction plays important role. Lomer dislocations are produced and destructed by dislocation reaction during tensile strain process in <001> oriented Au crystal. The Schmid law is the key intrinsic issue controlling the deformation mechanism for the nanowires with a size larger than 7 nm.  相似文献   

2.
The paper presents the results of microstructure of welded joints of hot-dip zinc galvanized steels E275D+Z and stainless steels X5CrNi18-10 (AISI 304, 1.4301) examination. Obtained results show the zinc evaporation from structural steel surface, it deposition on the stainless steel and penetration of it microstructure. The process mechanism is described and illustrated.  相似文献   

3.
Notch effect in austenitic stainless steel under cyclic torsion is quite different depending on the superposition of static tension. In pure torsion, the rubbing of the serrated factory-roof type crack faces delays the crack growth along the notch root. Thus, the lifetime in notched specimen becomes longer than in smooth specimen. However, in cyclic torsion with static tension, the flat crack path and mean tensile stress reduce the influence of the crack face contact. Accordingly, shorter lifetime resulted from higher strain concentration at the notch root. Crack growth in low carbon steel under cyclic torsion is highly affected by the ferrite/pearlite banded microstructure besides the addition of static tension. Because of a small amount of the crack face contact, the reduction of lifetime in notched specimen is revealed irrespective of superposition of static tension.  相似文献   

4.
Localized deformation and corrosion in irradiated 304 nuclear grade stainless steel in simulated primary water were investigated.The investigation was conducted by comparing the deformation structure,the oxide scale formed at the deformation structure,and their correlation with cracking.The results revealed that increasing the irradiation dose promoted localized corrosion at the slip step and grain boundary,which was primarily attributed to the strain concentration induced by enhanced localized deformation and depletion of Cr at grain boundary.Further,a synergic effect of the enhanced localized deformation and localized corrosion at the slip step and grain boundary caused a higher cracking susceptibility of the irradiated steel.  相似文献   

5.
本文研究了双电极奥氏体不锈钢焊条单弧焊电弧的静特性、焊接电流、电弧电压、焊芯间隙对双电极焊条单弧焊的工艺性能和焊缝成形的影响;通过热电偶测试技术,对双电极焊条单弧焊焊接过程中不同部位焊芯表面温升进行了测定.研究结果表明焊芯直径为φ4.0mm的双电极A102焊条,其合适焊接工艺参数为:焊接电流140~160A,电弧电压45V左右,焊条两芯间隙1.2~1.5mm,焊接板厚8mm的1Cr18Ni9Ti材料,焊缝成形良好.  相似文献   

6.
A corrosion spreading throughout the 304 stainless steel tubing of a water system to supply various buildings was observed, and also leaks were detected in welding zones. The same place is also crossed by a gas distribution network, with a helium pipe 316 of stainless steel that required periodic repairs more or less every two years, due to the presence of leaks. The tests showed that both types of stainless steel have suffered localized corrosion induced by hypochlorite ion, in a mechanism of dry/wet, and that the welding procedure performed on the 304 stainless steel is unacceptable. Some immediate procedures were undertaken to keep systems running, but recommendations were given for a final resolution of the problems.  相似文献   

7.
One of the current major driving forces behind instrument development in transmission electron microscopy (TEM) is the ability to observe materials processes as they occur in situ within the microscope. For many processes, such as nucleation and growth, phase transformations and mechanical response under extreme conditions, the beam current in even the most advanced field emission TEM is insufficient to acquire images with the temporal resolution (∼1 μs to 1 ns) needed to observe the fundamental interactions taking place. The dynamic transmission electron microscope (DTEM) avoids this problem by using a short pulse laser to create an electron pulse of the required duration through photoemission which contains enough electrons to form a complete high resolution image. The current state-of-the-art in high time resolution electron microscopy in this paper describes the development of the electron optics and detection schemes necessary to fully utilize these electron pulses for materials science. In addition, developments for future instrumentation and the experiments that are expected to be realized shortly will also be discussed.  相似文献   

8.
Grain boundary engineering (GBE) via low strain tension and annealing was used to enhance the resistance to stress corrosion cracking of a 304 stainless steel. Electron backscattered diffraction (EBSD) analysis exhibited that the GBE steel had a higher fraction of low-∑ coincidence site lattice (CSL) boundaries, larger grain-clusters, longer twin boundary chains, and fewer paths of connected non-twin boundaries with a more zigzag shape. Slow strain rate tests in high-temperature water showed that the GBE steel performed better plasticity, higher tensile strength, and similar yield strength compared to conventional steel. The low fraction of random boundaries in GBE steel resulted in a lower frequency of intergranular crack initiation, and the zigzag paths of non-twin boundaries made the intergranular crack propagation more difficult.  相似文献   

9.
Measurement of the activation energy for the formation of serrated grain boundaries (GB) has been carried out to understand its underlying formation mechanism in an AISI 316 stainless steel. The apparent incubation time necessary to initiate grain boundary serration was obtained at different aging temperatures, and the apparent activation energy for serration was carefully calculated from the Arrhenius relationship between incubation time and aging temperature. The activation energy for GB serrations in this alloy was measured to be approximately 148 ± 20 kJ mole−1, which is consistent with the activation energy for lattice diffusion of carbon in γ-iron (142 kJ mole−1). This result indicates that GB serration could be controlled essentially by the lattice diffusion of carbon to grain boundaries. Based on the through-thickness observation of serrated GBs, a straight boundary began to serrate from the surface at an early stage of the aging treatment, and then the serrated parts propagated throughout the entire grain boundary.  相似文献   

10.
Bellows made of austenitic stainless steel (AISI 304 grade) are being used as a conduit for liquid fuel and oxidizer in the propellant tank of a satellite launch vehicle. A few bellows were found leaky during re-pressure tests after 6 years of storage. A number of cracks were found originating from weld fusion lines. One of the leaking bellows was subjected to detailed metallurgical and chemical analysis. The synergistic effect of chloride ions and thermal stresses from welding was identified as the cause-a typical example of stress corrosion cracking (SCC).  相似文献   

11.
Fracture of single crystal nanolaminated thin films has been investigated through in situ straining of cross-sectional samples of Cu/Ni nanolaminates grown on Cu (001) single crystal substrates. The earlest stages of deformation exhibits a confined layer slip mechanism. With continued straining, unstable fracture occurs creating a mixed-mode crack that propagates across the nanolaminate, roughly perpendicular to the interfaces. Eventually, stable crack growth with intense plastic deformation ahead of the crack tip occurs over many bilayers in the direction of crack growth. Simultaneously, plasticity was seen to spread only 1 or 2 bilayer distances normal to the crack, creating an extremely localized plastic zone. Transmission electron microscopic (TEM) examination after the test did not reveal the presence of dislocations in the crack wake, except where severe crack deflection was observed. By comparison, the plastic zone size in the substrate was greater by several of orders of magnitude.  相似文献   

12.
The effect of different amounts of Nb and of homogenization on the ferritic stainless steels containing 17–18 wt.% Cr was investigated with scanning electron microscopy (SEM), optical microscopy, energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). It was observed that M23C6, NbC and sigma phase formed in these steels. In addition, the formation of Nb2C was observed in the sample containing 3.0 wt.% Nb. While the amount of Nb increased from 0.5 to 3.0 wt.% Nb, the microhardness of the matrix and the amount of M23C6 decreased and the toughness of the samples increased. After homogenization, the increase in the toughness of the samples containing 1.5–3.0 wt.%Nb was considerable and impressive.  相似文献   

13.
Strain controlled fatigue experiment was employed to evaluate automotive grade interstitial-free ferrite steel. Hundreds of grains were examined by scanning electron microscope under electron channeling contrast image technique of backscattered electron image mode for comprehensive comparison of micrographs with those taken under transmission electron microscope. The cyclic stress responses clearly revealed that rapid hardening occurs at the early stage of cycling as a result of multiplication of dislocations to develop loop patches, dipolar walls and dislocation cells at various total strain amplitudes. After primary rapid hardening, stress responses varied from being saturated to further hardening according to dislocation structure evolution at various strain amplitudes. The fatigue failure was always accompanied with further hardening including secondary hardening. The corresponding dislocation structures with the three types of hardening behaviors are discussed. Once the secondary hardening starts, dislocation cells began to develop along grain boundaries in the low strain region and then extended into grain interiors as strain amplitudes increased and cycling went on. The secondary hardening rates were found to be directly proportional to their strain amplitudes.  相似文献   

14.
Live observations of growing nanowires using in situ transmission electron microscopy (TEM) is becoming an increasingly important tool for understanding the dynamic processes occurring during nanowire growth. Here we present observations of growing InAs nanowires, which constitute the first reported in situ growth of a In-V compound in a transmission electron microscope. Real time observations of events taking place over longer growth lengths were possible due to the high growth rates of up to I nm/s that were achieved. Straight growth (mainly in 〈111〉B directions) was observed at uniform temperature and partial pressure while intentional fluctuations in these conditions caused the nanowires to form kinks and change growth direction. The mechanisms behind the kinking are discussed in detail. In situ observations of nanowire kinking has previously only been reported for nonpolar diamond structure type materials (such as Si), but here we present results for a polar zinc blende structure (InAs). In this study a closed cell with electron and X-ray transparent a-SiN windows was used in a conventional high resolution transmission electron microscope, enabling high resolution imaging and compositional analysis in between the growth periods.  相似文献   

15.
Hot compression tests were carried out in the semi-solid state of 9Cr18 stainless steel on Gleeble-1500 thermal simulation testing machine to investigate the effects of thixoforming parameters on its microstructure and mechanical properties. In this paper, microstructure was observed by scanning electron microscopy (SEM) and analyzed using energy dispersive spectrometer (EDS), and true stress–stain curves of the specimens with different initial microstructures after thixoforming were obtained to study the deformation mechanism. The results showed that thixoforming parameters such as reheating temperature and the strain rate had a significant influence on microstructure and mechanical properties evolution of 9Cr18 semi-solid billet. With increasing reheating temperature or decreasing strain rate, average size of carbides decreased from 2 μm to 0.5 μm, and the phenomenon of liquid extrusion during thixoforming became more obvious. During thixoforming, carbon atoms diffused to molten metal from austenite in the centre of specimens. When thixoforming temperature reached 1300 °C, martensitic transformation occurred after rapid cooling. Flow stress of semi-solid billet was lower than traditional ingot casting and hot rolled state steel, when reheated to the semi-solid range, due to their different original microstructure.  相似文献   

16.
A mechanism of dynamic softening of ferrite was studied in a 21Cr-10Ni-3Mo austenite/ferrite duplex stainless steel subjected to torsion at a strain rate of 0.7 s−1 at 1200°C. Transmission electron microscopy together with convergent beam electron diffraction were used with major emphasis on the study of misorientations across ferrite/ferrite boundaries. No evidence of discontinuous dynamic recrystallisation involving nucleation and growth of new grains was found within ferrite contrary to some suggestions made in the literature for similar experimental conditions. The softening mechanism has been classified as extended dynamic recovery characterised by a gradual increase in misorientations between neighbouring subgrains that were created by dynamic recovery processes at the earlier stages of deformation. The resulting dislocation substructure was a complex network of subgrain boundaries composed of a mix of higher- and lower-angle walls characterised by misorientation angles not exceeding 20° at a maximum obtained strain of 1.3.  相似文献   

17.
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.  相似文献   

18.
Bellows made of austenitic stainless steel AISI 304 grade are being used as conduit for liquid fuel and oxidizer in propellant tank of satellite launch vehicle. These bellows encountered frequent leakage problems. Leakage locations were found to be along the fusion line of ring to ply weld. In many of such failures, synergistic effect of chloride ions and thermal stresses from welding was the cause identified. Detailed metallurgical characterization of bellows with different weld parameters have been carried out, which served as an efficient tool for qualification of the processing of bellows. This paper highlights various metallurgical features observed in stainless steel bellows during process qualification programme and their impact on the performance.  相似文献   

19.
NiTi/Stainless Steel(SS) sheets have been welded via a vacuum electron beam welding process, with three methods(offsetting electron beam to SS side without interlayer, adding Ni interlayer and adding Fe Ni interlayer), to promote mechanical properties of the Ni Ti/SS joints. The joints with different interlayers are all fractured in the weld zone near the Ni Ti side, which is attributed to the enrichment of intermetallic compounds including Fe2 Ti and Ni3 Ti. The fracture mechanisms of different joints are strongly dependent on the types of interlayers, and the joints without interlayer, adding Ni interlayer and adding Fe Ni interlayer exhibit cleavage fracture, intergranular fracture and mixed fracture composed of cleavage and tearing ridge, respectively. Compared with the brittle laves phase Fe2 Ti, Ni3 Ti phase can exhibit certain plasticity, block the crack propagation and change the direction of crack propagation. The composite structure of Ni3 Ti and Fe2 Ti will be formed when the Fe Ni alloy is taken as the interlayer, which provides the joint excellent mechanical properties, with rupture strength of 343 MPa.  相似文献   

20.
Heat-transfer investigation and a failure analysis of a cracking furnace are presented. The cracking furnace, in which thermal decomposition of hydrocarbons occurs in its radiant section, represents a plug-flow reactor placed in a firebox in point of fluid mechanics and heat-transfer processes. The reacting mixture that consists of hydrocarbons and dilution steam is heated up by means of natural gas in the burners of radiant section.The aim of the investigation was to characterize the mechanical, chemical, and corrosion transformation processes occurring inside the convection zone and to examine a specific failure (leakage) process and damage. The geometrical model of the convection zone of the furnace was established by FLUENT software as well as the fluid mechanical model of the heating stage which covered the calculation of the flow characteristics and the temperature field resulted by the corresponding heat flow processes.Samples were taken from the different positions of the pipe made of different types of steel (A106, A335, A312, B407). The causes of the failure were investigated on the base of the results of composition and fine structure examinations. The outer surfaces of the samples of the pipes were examined using optical emission spectrometry (ARL 3460 OES instrument), while the main metallic components were determined with atom absorption spectrometry (device: PYE UNICAM PU 9100).After taking the samples signs for failure and changes in the structure were looked for. For these investigations, optical microscopy, scanning electron microscopy, point or small area microprobe (EDAX) and X-ray diffraction methods were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号