共查询到20条相似文献,搜索用时 15 毫秒
1.
以氮化硅(Si3N4)为基体, 氮化硼(BN)为添加剂, 叔丁醇为溶剂, 采用凝胶注模成型与无压烧结工艺(温度为1750 ℃、保温时间为1.5 h、流动N2气氛), 成功制备出具有一定强度和低介电常数的多孔BN/Si3N4陶瓷。在浆料中初始固相含量固定为15%体积分数的基础上, 研究了BN含量对多孔Si3N4陶瓷材料的气孔率、物相组成及显微结构的影响, 分析了抗弯强度、介电常数与结构之间的关系。结果表明, 通过改变BN含量可制备出气孔率为55.1%~66.2%的多孔Si3N4陶瓷; 多孔BN/Si3N4复合陶瓷的介电常数随着BN含量的增加而减小, 为3.39~2.25; 抗弯强度随BN含量提高而有所下降, BN质量分数为2.5%时, 抗弯强度最高, 为(74.8±4.25) MPa。 相似文献
2.
Xiangming Li Xiaowei Yin Litong Zhang Laifei Cheng Yuanchen Qi 《Materials Science and Engineering: A》2009,500(1-2):63-69
In order to prepare a structural/functional material with not only higher mechanical properties but also lower dielectric constant and dielectric loss, a novel process combining oxidation-bonding with sol–gel infiltration-sintering was developed to fabricate a porous Si3N4–SiO2 composite ceramic. By choosing 1250 °C as the oxidation-bonding temperature, the crystallization of oxidation-derived silica was prevented. Sol–gel infiltration and sintering process resulted in an increase of density and the formation of well-distributed micro-pores with both uniform pore size and smooth pore wall, which made the porous Si3N4–SiO2 composite ceramic show both good mechanical and dielectric properties. The ceramic with a porosity of 23.9% attained a flexural strength of 120 MPa, a Vickers hardness of 4.1 GPa, a fracture toughness of 1.4 MPa m1/2, and a dielectric constant of 3.80 with a dielectric loss of 3.11 × 10−3 at a resonant frequency of 14 GHz. 相似文献
3.
AbstractTextured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the same methods as those used for textured β-Si3N4 and β-Sialon. 相似文献
4.
Porous silicon nitride/silicon oxynitride composite ceramics were fabricated by silica sol infiltration of aqueous gelcasting prefabricated Si3N4 green compact. Silica was introduced by infiltration to increase the green density of specimens, so suitable properties with low shrinkage of ceramics were achieved during sintering at low temperature. Si2N2O was formed through reaction between Si3N4 and silica sol at a temperature above 1550 °C. Si3N4/Si2N2O composite ceramics with a low linear shrinkage of 1.3–5.7%, a superior strength of 95–180 MPa and a moderate dielectric constant of 4.0–5.0 (at 21–39 GHz) were obtained by varying infiltration cycle and sintering temperature. 相似文献
5.
Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting
This paper reports a novel method for producing porous Ti scaffolds with a gradient in porosity and pore size using the freeze casting method, in which TiH2/camphene slurries with various TiH2 contents (40, 25, and 10 vol.%) were cast sequentially into a mold, followed by freeze drying and heat-treatment in a vacuum at 1300 °C for 3 h. This simple sequential freeze casting method produced good bonding between the layers with different porosities of 35, 53, and 75 vol.% obtained using the TiH2 contents of 40, 25 and 10 vol.%, respectively. In addition, the pore size could be increased significantly by increasing the freezing time. The pore sizes obtained in the regions produced using 40, 25, and 10 vol.% TiH2 after freezing for 7 days were 96, 166, and 270 μm, respectively. 相似文献
6.
Porous Ti with an average macro-pore size of 200–400 μm and porosity in the range of 10–65% has been manufactured using polymethyl methacrylate (PMMA) powders as spacer particles. The compressive strength and elastic modulus of resultant porous Ti are observed in the range of 32–530 MPa and 0.7–23.3 GPa, respectively. With the increasing of the porosity and macro-pore size, the compressive strength and modulus decrease as described by Gibson–Ashby model. The failure due to cracking (complete fracture) of the struts on porous Ti is controlled primarily by macro-pores. Fractography shows evidence of the brittle cleavage fracture mainly, but containing a few fine shallow dimples and a small amount of transcrystalline fracture of similarly oriented laths. The failure mechanism has been discussed by taking the intrinsic microstructural features into consideration. 相似文献
7.
The dispersion characteristics of commercial Si3N4 powder in aqueous media (deionized water) was studied as a function of pH in the range 2–11. The slip was characterized for
its dispersion quality by various experimental techniques like particle size analysis, sedimentation phenomena, viscosity
and flow behaviour and zeta potential analysis. The optimum dispersion was found to be in the pH region 9–11 wherein the slurry
displayed minimum sedimentation height, minimum viscosity, near Newtonian flow behaviour and maximum zeta potential. The slip
is highly agglomerated in the pH range 2–8 as manifested by higher sedimentation height, higher viscosity, lower zeta potential
and thixotropic non-Newtonian flow behaviour. The 72 wt% (44 vol.%) Si3N4 slips made at pH = 10 resulted in green bodies having 53–59% of theoretical density after casting into plaster molds. 相似文献
8.
Jianfeng Zhu Wenwen Yang Haibo Yang Fen Wang 《Materials Science and Engineering: A》2011,528(21):6642-6646
In situ composites of TiAl reinforced with Al2O3 particles are successfully synthesized from an elemental powder mixture of Ti, Al and Nb2O5 by the hot-press-assisted reaction synthesis (HPRS) method. The as-prepared composites are mainly composed of TiAl, Al2O3, NbAl3, as well as small amounts of the Ti3Al phase. The in situ formed fine Al2O3 particles tend to disperse on the matrix grain boundaries of TiAl resulting in an excellent combination of matrix grain refinement and uniform Al2O3 distribution in the composites. The Rockwell hardness and densities of TiAl based composites increase gradually with increasing Nb2O5 content, and the flexural strength and fracture toughness of the composites have the maximum values of 634 MPa and 9.78 MPa m1/2, respectively, when the Nb2O5 content reaches 6.62 wt.%. The strengthening mechanism was also discussed. 相似文献
9.
《Advanced Powder Technology》2020,31(4):1736-1747
To explore the influence of acid solution with different components on the pore structure and mechanical properties of coal, nuclear magnetic resonance (NMR), scanning electron microscope (SEM), energy dispersion spectrum (EDS) and uniaxial compression experiments were used to analyze the acid-treated coal samples. The results show that acid treatment can obviously improve the connectivity of coal, increase the porosity of coal, and is conducive to the circulation and diffusion of gas, but the promotion effect of acid solutions of different components on pores with different pore sizes is different. After acid treatment, the number of mineral particles on the surface of the coal samples are obviously reduced, and the space filled with mineral particles is gradually exposed, thus increasing the density of pores and fractures of the coal samples. The energy spectrum analysis shows that acid solution added HF has a good removal effect on kaolinite minerals, iron minerals and calcite minerals. For the mechanical properties of the coal samples, acid treatment can reduce the strength and elastic modulus of coal samples, but increase its toughness. In addition, the fracture evolution of the acid-treated coal samples mainly goes through four stages: initial stage, transition stage, expansion stage and destruction stage. Because most of the energy accumulated in the acid-treated coal samples is used to damage the coal body, the acid-treated coal samples are easy to form fracture network, and is mostly broken in blocks when unstable. 相似文献
10.
Evolution of surface of sputter-deposited amorphous Si3N4 films growth on Si (100) substrates was investigated using atomic force microscopy (AFM). The scaling behaviors of the AFM topographical profiles were analyzed using the one-dimensional power spectral density. The results of root-mean-square surface height variation showed that there is a power law relationship between the surface roughness and deposition time. It is interesting to note that the growth exponent can be divided into one region and two regions, respectively, when Si3N4 films are deposited at different working pressures. A very low growth exponent of β = 0.07 ± 0.01 was found when Si3N4 films were deposited at a working pressure of 1.6 × 10− 1 Pa. However, the growth exponent β can be divided into two regions, which is β1 = 0.09 ± 0.01, β2 = 0.24 ± 0.03 and β1 = 0.09 ± 0.01, β2 = 0.33 ± 0.04, when the films were deposited at a working pressure of 2.1 × 10− 1 Pa and 2.7 × 10− 1 Pa, respectively. The mechanisms of anomalous dynamic scaling exponents of Si3N4 films deposited at different working pressures were discussed. 相似文献
11.
Based on two sets of TiAl powder, two kinds of porous TiAl were separately fabricated by powder metallurgical route including four stages. The porous TiAl with single pore structure (SPS) was prepared using pre-alloyed TiAl powder prior mechanical ball milling. Another porous TiAl with composite pore structure (CPS) was manufactured depending on composite mixture of Ti/Al elemental powders. The sintering was achieved at much lower temperature for the pre-alloyed power than for the elemental composite mixture. Compressive mechanical tests indicate that much higher mechanical strength can be obtained for SPS than for CPS at the same porosity. It was suggested that the difference of mechanical properties is ascribed to the variety of the compressive deformation process. 相似文献
12.
为了提高石墨相氮化碳光催化性能,本文以尿素、硫脲、醋酸锌为前驱体,通过氧化热剥离与共混煅烧法分别制备g-C3N4纳米片和ZnO/g-C3N4异质结复合材料,并采用TEM、FTIR、XRD、UV-Vis DRS、BET等表征手段对制备的催化剂进行结构表征。以罗丹明、大肠杆菌为探针,考察了催化剂的光催化降解性能和抑菌活性。结果表明:以尿素和硫脲为前驱体,经过氧化热剥离处理后能得到的g-C3N4 2D纳米片,其比表面积更大、光催化性能更加优异,且其对罗丹明的降解率较未剥离的g-C3N4提高了21.2%。在40 min氙灯照射下,纯g-C3N4并未表现出良好的抑菌性能,而通过ZnO复合制备的ZnO/g-C3N4异质结复合材料,在光催化降解率和抑菌活性方面均有很大提高,其中复合20%ZnO制得的ZnO异质结复合材料表现出最佳的光催化性能... 相似文献
13.
A. Hallbauer D. Huber G.N. Strauss S. Schlichtherle A. Kunz H.K. Pulker 《Thin solid films》2008,516(14):4587-4592
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams. 相似文献
14.
The nitridation behavior of silicon powder with added Zr compounds was studied in order to assess the catalytic effect of zirconium on the formation of reaction bonded silicon nitride, using high purity silicon powder and monoclinic zirconia as starting materials. Thermogravimetric analysis revealed that the addition of ZrO2 to Si powder reduced the temperature of the main nitridation reaction, and increased the amount of silicon converted to silicon nitride at a given temperature. On the other hand, the nitridation rate at higher temperatures (1380-1400 °C) indicated similar values for both pure Si and Si with ZrO2 additions. 相似文献
15.
Fangli Yu Jianfeng Yang Yaohui Xue Jun Du Yuan Lu Jiqiang Gao 《Bulletin of Materials Science》2009,32(2):177-181
Porous Si3N4 ceramics were successfully synthesized using cheaper talc and clay as sintering additives by pressureless sintering technology
and the microstructure and mechanical properties of the ceramics were also investigated. The results indicated that the ceramics
consisted of elongated β-Si3N4 and small Si2N2O grains. Fibrous β-Si3N4 grains developed in the porous microstructure, and the grain morphology and size were affected by different sintering conditions.
Adding 20% talc and clay sintered at 1700°C for 2 h, the porous Si3N4 ceramics were obtained with excellent properties. The final mechanical properties of the Si3N4 ceramics were as follows: porosity, P
0 = 45·39%; density, ρ = 1·663·g·cm−3; flexural strength, σ
b (average) = 131·59 MPa; Weibull modulus, m = 16·20. 相似文献
16.
The mechanical properties and microstructure of SiC ceramics, hot pressed by simultaneously adding nano-SiC and oxides (MgO+Al2O3+Y2O3) or nitrate salts (Mg(NO3)2+Al(NO3)3+Y(NO3)3) as additives, were evaluated. The oxide additives system slightly influenced the mechanical properties of the ceramics, while the addition of nano-SiC lead to finer microstructure, and 5 vol.% nano-SiC changed the fracture mode from intergranular type to transgranular type. The ceramics with nitrate salts had fine, equiaxed grains with an average grain size larger than that of the system added oxides, thus inducing lower Viker’s hardness and flexural strength, while the presence of crystalline YAG phase improved the fracture toughness by 54.7%. Also, an observed increase in grain growth—with decreasing weight fraction of liquid and the grounded grain morphology in this system—confirmed a diffusion-controlled growth mechanism. Although the sample with the least amount of additives has the lowest relative density and largest grain size, its flexural strength did not drastically decrease. The influence of nano-SiC on the fracture toughness in the nitrate additive system was negligible. 相似文献
17.
A ZrB2 ceramic containing 20 vol.% SiC and 10 vol.% graphite flake (ZrB2-SiC-G) was fabricated by hot pressing. It was shown that the fracture toughness was improved due to the introduction of graphite flake, whereas the flexure strength and hardness decreased slightly. The fracture toughness of ZrB2-SiC-G composite was 6.1 ± 0.3 MPa·m1/2, which was much higher than that of monolithic ZrB2, ZrB2-SiC composite and similar ZrB2-SiC-C composite. The toughening mechanisms are crack deflection and branching as well as stress relaxation near the crack tip. The results here pointed to a potential method for improving fracture toughness of ZrB2-based ceramics. 相似文献
18.
Thermal stability of the TiAlN/Si3N4 nanoscale multilayered coating that was reported to show excellent hardness and toughness, has been investigated in terms of the nano-layered structure and hardness. TiAlN/Si3N4 nanoscale multilayered coatings with various thickness of Si3N4 layer were prepared by alternating deposition of TiAlN and Si3N4. In contrast to other nanoscale multilayered coating system such as AlN/CrN in which the intensity of the low angle XRD peaks decreases with increasing annealing temperature by interdiffusion between adjacent layers, the low angle XRD peak intensity of the nanoscale multilayered TiAlN/Si3N4 coatings increased after heat-treatment in an N2 atmosphere up to 800 °C. Such a thermal stability of the nano-layered structure is believed to be due to spinodal type phase separation of TiAlN and Si3N4, which increased the hardness value of the TiAlN/Si3N4 coating at high temperatures. 相似文献
19.
ZK60A Nanocomposite containing Si3N4 nanoparticles was fabricated using solidification processing followed by hot extrusion. The ZK60A nanocomposite exhibited smaller grain size than monolithic ZK60A, significantly reduced presence of intermetallic phase, reasonable Si3N4 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 12% lower hardness than monolithic ZK60A. Compared to monolithic ZK60A (in tension), the ZK60A nanocomposite simultaneously exhibited higher 0.2% TYS, UTS, failure strain and work of fracture (WOF) (+21%, +17%, +85% and +119%, respectively). Also, compared to monolithic ZK60A (in compression), the ZK60A nanocomposite exhibited lower 0.2% CYS (−33%) and higher UCS, failure strain and WOF (+16%, +53% and +48%, respectively). The effect of adding Si3N4 nanoparticles on the enhanced tensile and compressive response of ZK60A is investigated in this paper. 相似文献
20.
《Materials Science & Technology》2013,29(8):1303-1308
AbstractBulk nanocrystalline Fe3Al based materials with 5, 10 and 15 wt-%Mo were prepared by aluminothermic reaction. The microstructure and mechanical properties of the materials were investigated. It was shown that the materials consisted of a nanocrystalline matrix phase that was composed of Fe, Al and Mo and a little Al2O3 contamination phase. The nanocrystalline phase had a disordered bcc crystal structure. Average grain sizes of the nanocrystalline phase of the materials with 5, 10 and 15 wt-%Mo were 19, 31 and 24 nm respectively and that of the material with 5 wt-%Mo was the smallest. The materials with 10 and 15 wt-%Mo exhibited brittle behaviour in compression, whereas the material with 5 wt-%Mo had a large plastic deformation. The material with 5 wt-%Mo had the highest bending strength and the lowest compressive yield strength. 相似文献