首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component.  相似文献   

2.
The optimum condition of glass fiber/epoxy composites was investigated according to mixing ratio of two epoxy matrices. Novolac type epoxy and isocyanate modified epoxy were used as composites matrix. Based on chemical composition of mixing matrix, optimum mixing ratio of epoxy resins was obtained through FT-IR instrument. In order to investigate thermal stability and interface of epoxy resin, glass transition temperature was observed by DSC instrument, and static contact angle was measured by reflecting microscope. Change of IR peak and Tg was conformed according to different epoxy mixing ratios. After fabrication of glass fiber/epoxy composites, tensile, compression, and flexural properties were tested by UTM by room and high temperature. The composites exhibited best mechanical properties when epoxy mixing ratio was 1:1.  相似文献   

3.
This paper presents an experimental investigation into the large reductions to the tensile fracture stress and the associated strength loss mechanism of E-glass fibres during thermal recycling. Fractographic analysis reveals the fracture process is controlled by surface flaws, irrespective of heat treatment temperature and duration. The fracture toughness is an important material property in order to understand possible changes in the strength–flaw relationship during heat treatment. Focussed ion beam (FIB) milling is used to artificially create a single nano-sized deep notch (between 30 and 1000 nm) in glass fibres. The strength loss, fracture toughness, fracture mirror constant and fracture mechanism observed for nano-notched and thermally recycled fibres are identical, indicating bulk property changes do not occur during thermal recycling. The study proves conclusively that surface flaw growth is the controlling mechanism reducing fibreglass strength during thermal recycling of waste polymer composites.  相似文献   

4.
Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, and environmental concern. However, some limitations such as low modulus, poor moisture resistance were reported. This study aimed to investigate the effect of glass fiber hybridization on the physical properties of sisal–polypropylene composites. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Incorporating glass fiber into the sisal–polypropylene composites enhanced tensile, flexural, and impact strength without having significant effect on tensile and flexural moduli. In addition, adding glass fiber improved thermal properties and water resistance of the composites.  相似文献   

5.
The effects of small amount of organically modified Clay (Clay) in polyamide 6 (PA6) on fire performance and thermal mechanical properties of Clay/PA6/woven glass fibres (GF) laminates are investigated by cone calorimeter test, dynamic mechanical thermal analysis (DMTA), and heat distort temperature (HDT) measurement. The mechanical properties, such as tensile and flexural properties of Clay/PA6 composites and Clay/PA6/GF laminates were also measured. Up to 3 wt.% Clay in a Clay/PA6/GF laminate with fibre volume fraction of 30 vol.% delayed the ignition time and peak heat release rate (PHRR) time by 55% and 118%, respectively, even though the value of the PHRR or the HDT was not significantly affected. 2 wt.% Clay increased flexural modulus and strength of the Clay/PA6/GF laminate by 10% and 16%, respectively, but more Clay did not increase the mechanical properties accordingly. Small amount of Clay does not affect glass fibre dominated properties, such as HDT, but do affect matrix dominated properties, and significantly affect the fire performance in terms of delaying ignition time and PHRR time. Optimization of laminate making process could benefit from additions of more Clay, therefore further improve fire performance and enhance mechanical properties.  相似文献   

6.
The aim of the present study is to investigate and compare the mechanical and thermal properties of raw jute and banana fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with banana fiber. The jute and banana fibers were prepared with various weight ratios (100/0, 75/25, 50/50, 25/75 and 0/100) and then incorporated into the epoxy matrix by moulding technique to form composites. The tensile, flexural, impact, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that addition of banana fiber in jute/epoxy composites of up to 50% by weight results in increasing the mechanical and thermal properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.  相似文献   

7.
The thermal aging of a glass matrix composite reinforced by short carbon fibres as well as by ZrO2 particles (hybrid composite) was investigated at temperatures in the range 500–700 °C for exposure durations of 24 h in air. The mechanical properties of as-received and aged samples were evaluated at room temperature by using the three-point flexure chevron notch technique. The fracture toughness values of as-received specimens were in the range 2.6–6.4 MPa m1/2. Fracture toughness was affected by the thermal aging conditions. For thermal aging at temperatures <700 °C, degradation of fibre–matrix interfaces occurred and therefore the apparent fracture toughness and flaw tolerant resistance decreased. For the most severe ageing conditions tested (700 °C/24 h), fracture toughness values dropped to 0.4 MPa m1/2. Significant degradation of the material was detected for this aging condition, mainly characterised by porosity formation in the matrix as a result of softening of the glass and oxidation of the carbon fibres.  相似文献   

8.
Aluminum matrix composite reinforced by in situ generated single crystalline MgAl2O4 whiskers was fabricated by chemical synthesis method in an Al-Mg-H3BO3 system. A large number of MgAl2O4 whiskers were generated during the sintering process and distributed homogeneously in the Al matrix. The whiskers penetrate into the matrix grains to form the framework of the materials, leading to an incredible increase in mechanical properties of the composites. The generation mechanism of the MgAl2O4 whiskers was also discussed.  相似文献   

9.
This paper presents a preliminary investigation on the effects of incorporating carbon nanotubes (CNT) into polyamide-6 (PA6) on mechanical, thermal properties and fire performance of woven glass reinforced CNT/PA6 nanocomposite laminates. The samples were characterized by tensile and flexural tests, thermal gravimetric analysis (TGA), heat distortion temperature (HDT) measurements, thermal conductivity and cone calorimeter tests. Incorporation of up to 2 wt% CNT in CNT/PA6/GF laminates improved the flexural stress of the laminates up to 36%, the thermal conductivity by approximately 42% and the ignition time and peak HRR time was delayed by approximately 31% and 118%, respectively.  相似文献   

10.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

11.
Polypropylene composites were prepared from three different PP matrices, a homopolymer, a random and a heterophase copolymer, and corn cob to study the effect of matrix characteristics on deformation and failure. The components were homogenized in an internal mixer and compression molded to 1 mm thick plates. Mechanical properties were characterized by tensile testing, while micromechanical deformations by acoustic emission measurements and fractography. The results proved that the dominating micromechanical deformation process may change with matrix properties. Yield stress determined from the stress vs. strain traces may cover widely differing processes. Debonding is the dominating process when the adhesion of the components is poor, while matrix yielding and/or filler fracture dominate when adhesion is improved by the introduction of a functionalized polymer. The dominating deformation mechanism is determined by component properties and adhesion. Interfacial adhesion, matrix yield stress and the inherent strength of the reinforcement can be limiting factors in the improvement of composite strength. The properties of polymer composites reinforced with lignocellulosic fillers are determined by micromechanical deformation processes, but they are independent of the mechanism of these processes.  相似文献   

12.
The goal of this work is the evaluation of nanoscaled reinforcements; in particular nanodiamonds (NDs) and carbon nanotubes (CNTs) on properties of titanium matrix composites (TiMMCs). By using nano sized materials as reinforcement in TiMMCs, superior mechanical and physical properties can be expected. Additionally, titanium powder metallurgy (P/M) offers the possibility of changing the reinforcement content in the matrix within a very wide range. In this work, TiMMCs have been produced from titanium powder (Grade 4). The manufacturing of the composites was done by hot pressing, followed by the characterisation of the TiMMCs. The Archimedes density, hardness and oxygen content of the specimens in addition to the mechanical properties were compared and reported in this work. Moreover, XRD analysis and SEM observations revealed in situ formed titanium carbide (TiC) phase after hot pressing in TiMMCs reinforced with NDs and CNTs, at 900 °C and 1100 °C respectively. The strengthening effect of NDs was more significant since its distribution was more homogeneous in the matrix.  相似文献   

13.
Defects created during the manufacture of an oxide/oxide and two non-oxide (SiC/SiNC and MI SiC/SiC) ceramic matrix composites (CMCs) were categorized as follows: (1) Intra-yarn defects such as dry fibers, (2) Inter-yarn defects such as those at crossover points, matrix voids, shrinkage cracks and interlaminar separation, and (3) Architectural defects such as layer misalignment. Their impact on elastic properties was analytically investigated using a stiffness averaging approach considering the defects to have volumetric and directional influences. In-plane tensile and shear moduli as well as the through-thickness compressive modulus were experimentally evaluated. Results of analytical model were around 7% on average from the mean value of the experimental data. It was observed that interlaminar separation drastically reduced the through-thickness modulus by about 63% for the SiC/SiNC, 40% for the MI SiC/SiC and around 32% for the oxide/oxide composites. Shrinkage cracks in oxide/oxide composite reduced the in-plane tensile and shear moduli by 14% and 8.8%, respectively.  相似文献   

14.
The effect of adding graphene in epoxy containing either an additive (MP) or reactive-type (DOPO) flame retardant on the thermal, mechanical and flammability properties of glass fiber-reinforced epoxy composites was investigated using thermal analysis; flexural, impact, tensile tests; cone calorimetry and UL-94 techniques. The addition of MP or DOPO to epoxy had a thermal destabilization effect below 400 °C, but led to higher char yield at higher temperatures. The inclusion of 10 wt% flame retardants slightly decreased the mechanical behavior, which was attributed to the poor interfacial interactions in case of MP or the decreased cross-linking density in case of DOPO flame retarded resin. The additional graphene presence increased flexural and impact properties, but slightly decreased tensile performance. Adding graphene further decreased the PHRR, THR and burning rate due to its good barrier effect. The improved fire retardancy was mainly attributed to the reduced release of the combustible gas products.  相似文献   

15.
A new type of structural damping composite was prepared by interleaving aramid nonwoven fabrics (ANF) modified with semi-crystalline polyvinylidene fluoride (PVDF) between carbon-fibre-reinforced bismaleimide (BMI) laminae. The co-cured composite exhibited an increase of 108% and 2.72% in loss factor and flexural modulus, respectively, compared with the original carbon-fibre-reinforced BMI composite. The damping behaviour of the co-cured composites was experimentally investigated using the single cantilever beam test and dynamic mechanical analysis. Furthermore, the composite interlaminar shear strength and flexural strength and modulus were also investigated. The results indicated that the composite interleaved with ANF/PVDF possessed higher flexural modulus and loss factor than the composites interleaved with ANF or PVDF films alone as a result of synergistic reinforcement of ANF and PVDF. Finally, the reinforcement mechanism of ANF/PVDF was investigated by analyzing the composite microstructure and the dynamical mechanical properties of ANF, PVDF, and ANF/PVDF interlayers.  相似文献   

16.
A alumina borate whisker with Bi(OH)3 coating was prepared by a chemical method. The coated whiskers were sintered at various temperatures. The coated whisker-reinforced pure aluminum matrix composite was fabricated by squeeze casting method. The microstructures of the coated whiskers and coated composites with the different sintering temperature of whisker preform were studied, and the tensile properties of the coated composites at room temperature were also investigated. It can be found that the microstructures of coatings on the whisker surfaces and at the interface in the coated composites are strongly dependent on the sintering temperature of whisker preform. The ultimate tensile strength and elongation to fracture of the coated composites increased with the increasing of sintering temperature of the whisker preform.  相似文献   

17.
In this investigation, Polyetherimide (PEI) reinforced with multi-walled carbon nanotube (MWCNT) using novel melt blending technique. Surface of MWCNTs are modified by acid treatment as well as by plasma treatment. PEI nano composites with 2 wt% treated MWCNT shows about 15% improvement in mechanical properties when compared to unfilled PEI. The thermal decomposition kinetics of PEI/MWCNT nano composites has been critically analyzed by using Coats – Redfern model. The increase in activation energy for thermal degradation by 699 kJ/mol for 2 wt% MWCNT implies improvement in the thermal properties of PEI. Studies under Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM) depict significant interfacial adhesion with uniform dispersion of MWCNT in polymer matrix due to surface functionalization. 0.5 wt% chemically modified MWCNT shows typical alignment of MWCNT. There is a significant improvement in mechanical properties and thermal properties for surface functionalized MWCNT reinforced.  相似文献   

18.
Recycled mixed post-consumer and post-industrial plastic wastes consisting of HDPE, LDPE and PP were injection moulded with short glass fibre (10–30% by weight) to produce a new generation composite materials. Intensive experimental studies were then performed to characterise the tensile, compression and flexural properties of glass fibre reinforced mixed plastics composites. With the addition of 30 wt.% of glass fibre, the strength properties and elastic modulus increased by as much as 141% and 357%, respectively. The best improvement is seen in the flexural properties due to the better orientation of the glass fibres in the longitudinal direction at the outer layers. The randomness and length of the glass fibre were accounted to modify the existing rule of mixture and fibre model analysis to reliably predict the elastic and strength properties of glass fibre reinforced mixed plastics composites.  相似文献   

19.
The compressive mechanical properties of two kinds of closed-cell aluminum foam–polymer composites (aluminum–epoxy, aluminum–polyurethane) were studied. The nonhomogeneous deformation features of the composites are presented based on the deformation distributions measured by the digital image correlation (DIC) method. The strain fluctuations rapidly grow with an increase in the compressive load. The uneven level of the deformation for the aluminum–polyurethane composite is lower than that for the aluminum–epoxy composite. The region of the preferentially fractured aluminum cell wall can be predicted by the strain distributions in two directions. The mechanical properties of the composites are investigated and compared to those of the aluminum foams. The enhancement effect of the epoxy resin on the Young’s modulus, the Poisson’s ratio and the compressive strength of the aluminum foams is greater than that of the polyurethane resin.  相似文献   

20.
The present paper examines the mechanical properties of polymer mortar (PM), with different weight fraction of nano-Al2O3 and nano-Fe2O3. The results showed that flexural and compressive strength measured of PM filled with nanoparticles were lower than plain polymer mortar but a considerably stiffness increase was observed for all formulations tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号