首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
ChMI/ MMA/AN悬浮共聚物与PVC共混的研究   总被引:6,自引:0,他引:6  
杨利庭  胡学锋  高俊刚 《塑料工业》2003,31(4):12-14,18
通过悬浮共聚得到了N-环己基马来酰亚胺(ChMI)、甲基丙烯酸甲酯(MMA)、丙烯腈(AN)三元共聚物(PCMA),用作耐热改性剂与PVC共混。考察了共聚物用量对共混物热性能、力学性能、流变性能的影响,用扫描电镜(SEM)观察其断面。结果表明:随共聚物用量的增加,共混物的玻璃化温度和维卡软化点明显提高;PVC第一阶段降解速率减小,降解守毕后平台区残留量逐渐上升;拉伸强度明显提高,冲击强度在一定比例范围内几乎不变;熔体表观粘度增加,呈假塑性流体。  相似文献   

2.
通过悬浮聚合得到了甲基丙烯酸甲酯-N-环己基马来酰亚胺-丙烯腈三元共聚物,将其作为耐热改性剂与PVC共混。研究了单体配比对共聚物的玻璃化转变温度和溶度参数的影响及共聚物含量对共混物热性能和力学性能的影响。结果表明,共聚物的玻璃化转变温度随N-环己基马来酰亚胺(CHMI)用量的增加明显提高,随丙烯腈(AN)用量的增加而降低;溶度参数随CHMI用量的增加上升,随AN用量的增加而下降。将此共聚物与PVC共混,当其用量为PVC的40%(质量分数,下同)时,PVC的维卡软化点提高了20℃。  相似文献   

3.
汪艳  戚欢  陈康 《聚氯乙烯》2010,38(10):16-18
研究了N-苯基马来酰亚胺/甲基丙烯酸甲酯/苯乙烯三元共聚物(简称三元共聚物)对PVC力学性能、耐热性和加工性能的影响。结果表明:随着三元共聚物用量的增加,试样的拉伸性能、弯曲性能和维卡软化温度增加,但冲击强度有所下降;PVC共混料的熔融黏度降低,加工性能提高,但塑化时间延长。  相似文献   

4.
PVC-C/PVC/MBS三元共混材料的研究   总被引:1,自引:0,他引:1  
研究了氯化聚氯乙烯(PVC-C) /聚氯乙烯(PVC)与抗冲改性剂MBS[聚丁二烯(PB)与甲基丙烯酸甲酯(MMA)及苯乙烯(St)按枝共聚物]的二儿共混物的物理力学性能和流变性能。结果表明:共混物的维卡软化点随PVC-C用量的增加而上升,在PVC-C/PVC=50 /50(质量比)处有一拐点。共棍物的拉伸强度、弯曲模量随PVC-C用量的增加而提高; 而冲山强度和断裂伸长率都随PVC-C用量增加而下降。共棍物中随PVC-C用量增加,塑化能力增强,平衡转矩上升。不同的加工助剂可降低共棍物熔体黏度,改善加工性能。  相似文献   

5.
研究了聚氯乙烯(PVC)与(苯乙烯/马来酸酐)共聚物(SMAH)的共混改性,测定了共混物的冲击强度、熔体流动速率和维卡软化点。SMAH可以显著地提高PVC的熔体流动速率和维卡软化点,但共混物的制品冲击强度降低。加入第三组分(乙烯/乙酸乙烯酯)共聚物(E/VAC)后,PVC/SMAH共混物的制品冲击强度提高。结构分析表明,PVC/SMAH共混物体系是典型的两相体系。  相似文献   

6.
CPVC/PVC/CPE三元共混改性的应用   总被引:6,自引:0,他引:6  
研究了CPVC/PVC/CPE三元共混物的物理力学性能和流变性能。结果表明 :共混物的维卡软化温度、拉伸屈服强度和熔体粘度随CPVC用量的增加而明显增加 ;CPE的用量为 4~ 8份时可明显改善共混物的冲击强度  相似文献   

7.
采用氯化聚乙烯(CPE)对氯化聚氯乙烯(PVC—C)进行抗冲改性,将改性后的PVC—C与PVC进行共混,研究了PVC-C/PVC配比对PVC-C/PVC共混物力学性能、耐热性能及流变形能的影响。结果表明,PVC—C/PVC共混物的维卡软化点随PVC—C的用量增加而上升,在50/50(质量比)处有一拐点,大于50/50时上升更快些。共混物的拉伸强度、弯曲强度和熔体黏度随PVC—C用量的增加而提高;混物中随PVC—C用量增加,塑化时间缩短,塑化能力增强,而冲击强度和断裂伸长率却随PVC—C用量增加而下降。共平衡转矩增加。  相似文献   

8.
以具有核壳结构的纳米级交联粒子为耐热改性剂,系统研究了聚氯乙烯(PVC)树脂/粒子耐热改性剂/甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)树脂三元共混体系的力学性能、维卡耐热性能及流变行为,探讨了刚性粒子和橡胶粒子在PVC树脂增韧和耐热改性过程中的相互作用及关键影响因素。结果表明:具有核壳结构的纳米离子型耐热改性剂可以显著提高PVC树脂的维卡软化温度,加入MBS树脂可提高共混物冲击强度。研究发现,PVC中加入8份MBS和15份耐热改性剂,可制得耐热、抗冲兼备的PVC共混新材料。  相似文献   

9.
CPVC/ABS二元共混物性能的研究   总被引:2,自引:0,他引:2  
研究了ABS树脂对CPVC/ABS共混物的力学性能和加工性能的影响。结果表明,随着ABS含量的增加,CPVC/ABS二元共混物的拉伸强度,维卡软化点和熔体粘度下降,而CPVC/ABS共混物冲击强度得到明显改善。  相似文献   

10.
通过在氯乙烯单体悬浮聚合过程中加入苯乙烯-马来酸酐共聚物(SMA),合成苯乙烯-马来酸酐接枝氯乙烯共聚物(SMA-g-VC),使其耐热性能、力学性能以及流变性能高于PVC/SMA共混体系,克服了共混体系冲击强度大幅下降的缺点,通过拉伸试验机、红外、旋转流变、维卡软化点等对其力学性能、结构特征、流变性、耐热性能与PVC/SMA共混体系对比分析,结果表明:SMA-g-VC共聚物在1 640 cm~(-1)以及3 236 cm~(-1)处出现新的红外吸收峰,拉伸强度、断裂伸长率、冲击强度、维卡软化点均比共混体系高,且其加工流变性能更好、塑化时间更短。  相似文献   

11.
A new kind of blends of polyvinyl chloride (PVC)/nylon terpolymer was reported in this article. Two compatibilizers were used in this study: one is a terpolymer of ethylene–n‐butyl acrylate–monoxide (EnBACO); the other is terpolymer of EnBACO grafted with maleic anhydride (EnBACO‐g‐MAH). The observation of scanning electron microscope (SEM) reveals that the PVC/nylon terpolymer blends have a two‐phase structure; and the nylon terpolymer phase is the continuous phase, and PVC domains in the PVC/nylon terpolymer/EnBACO‐g‐MAH blends have fine dispersion over a broad range of the PVC/nylon terpolymer ratio. EnBACO‐g‐MAH is more compatible with the nylon terpolymer than EnBACO. EnBACO and EnBACO‐g‐MAH have different effects on the glass transition temperatures of the PVC phase and nylon terpolymer phase in the blends. The notched Izod impact strength, tensile strength, elongation at break, Vicat softening temperature (VST), and melt flow index (MFI) critically depend on PVC/nylon terpolymer ratio, the kinds and concentration of the compatibilizers. The PVC/nylon terpolymer/EnBACO‐g‐MAH blends display a good combination of high toughness, high flowability, and high VST under low load. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2823–2832, 2001  相似文献   

12.
为改善聚氯乙烯(PVC)和聚乙烯(PE)界面黏结性能,制备了一系列PE/PVC共混物及其与PE的黏结材料,探究了原料比例和成型温度对(PE/PVC)/PE界面黏结性能的影响。结果表明,PE/PVC共混物为不相容体系。共混物中随着PE含量升高,体系拉伸强度增大,断裂伸长率升高。(PE/PVC)/PE材料中,随着PE/PVC共混物中PVC含量升高,PE/PVC与PE的界面黏结强度先升高后降低。成型温度升高,界面黏结性能提高。在PE/PVC比例为60/40、黏结温度为100℃时,PE/PVC共混物与PE的界面黏结强度最大,可与共混物拉伸强度接近。  相似文献   

13.
The emulsion terpolymerization of methyl methacrylate (MMA), ethyl acrylate (EA), and acrylic acid (AA) was carried out under a nitrogen atmosphere at 70°C. The final terpolymer conversion was determined gravimetrically. The synthesized MMA–EA–AA terpolymer was characterized with 1H‐NMR spectroscopy, thermal analysis, and gel permeation chromatography. Glass‐transition temperatures of the MMA–EA–AA terpolymer were determined with a differential scanning calorimeter. Ethylene–propylene–diene monomer rubber (EPDM)/poly(vinyl chloride) (PVC) blends were prepared with different blend ratios (10/90, 20/80, 30/70, 40/60, and 50/50) in the presence and absence of MMA–EA–AA as a compatibilizer. The morphology of those blends was examined with the aid of a scanning electron microscope. The scanning electron micrographs in the presence of the MMA–EA–AA terpolymer illustrated the disappearance of the macroscale phase separation of EPDM/PVC blends as a result of the incorporation of MMA–EA–AA into that blend, indicating an improvement of the homogeneity. The mechanical properties of the EPDM/PVC blend films and the dielectric properties of the melt blends were investigated. The swelling behavior of the cured blends in the brake fluid was also discussed. The results illustrated that the mechanical properties, the weight swelling values, and the dielectric constant values showed linear behavior versus the blend ratios after the incorporation of the terpolymer. However, those values showed deviations from linearity in the absence of the terpolymer. That, in turn, ensured the results obtained with the scanning electron microscope. The results reveal that the MMA–EA–AA terpolymer prepared can be used successfully to improve the homogeneity of EPDM/PVC blends used in hose and oil seal applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
采用双辊混炼机将乙烯-醋酸乙烯酯-一氧化碳三元共聚物(Elvaloy)与经改性的聚氯乙烯(PVC)熔融共混,制备PVC/Elvaloy共混物,考察了不同含量Elvaloy对PVC的透明性、低温性能、微观形态结构、力学性能及塑化温度等的影响。结果表明,共混物的透光率在76 %以上,雾度低于21 %,具有良好的透明性;Elvaloy可使PVC的低温冲击强度提高2倍,断裂伸长率提高,脆性温度降低10 ℃,塑化温度降低20 ℃以上;当Elvaloy添加量为2份时,PVC/Elvaloy共混物显示出1个玻璃化转变温度,相容性良好,且随着Elvaloy含量的增加,玻璃化转变温度呈下降趋势。  相似文献   

15.
In order to increase the processability and mechanical properties of poly(vinyl chloride) (PVC), the terpolymer of acrylonitrile-chlorinated polyethylene-styrene (ACS) is used to modify the PVC. The plasticizing, rheological, and dynamic mechanical properties of PVC/ACS blends are investigated by means of torque rheometer, oscillation rheometer, and dynamic mechanical analyzer. The measurements of torque rheometer showed that both plasticizing time and stabilization torque are decreased with increasing ACS content. The PVC/ACS melts displayed larger dynamic storage modulus (G′), loss modulus (G′′), and complex viscosity (η*) than that of pure PVC, and these values reached maximum for the blend with 10 wt% ACS. When ACS content was below 10 wt%, PVC and ACS showed good compatibility in the blends by displaying a single T g; however, when ACS content was more than 15 wt%, the phase separation phenomena occurred in the blends. PVC/ACS blends showed larger storage modulus (E′) and loss modulus (E′′) than that of pure PVC, but these values decreased with increasing ACS content. ACS can enhance both tensile and impact strength of PVC, and the impact strength reached maximum with 15 wt% ACS content which is higher 2.5 kJ/m2 than the pure PVC. These results suggested that ACS is an efficient processing aid and toughening modifier for PVC at appropriate content.  相似文献   

16.
A series of tricomponent blends of poly(vinyl chloride)/chlorinated polyethylene/ethylene propylene diene terpolymer (PVC/CPE/EPDM) were prepared and studied. CPE was used not only to improve the room temperature impact resistance of PVC but also as a polymer compatibilizer; while EPDM was used to enhance the impact resistance of PVC especially in low temperature range. Our data showed that the improvements of PVCs impact strength were significant either at room temperature or at low temperature (-12°C), however, a loss of the yield tensile strength was observed. On the basis of morphology, an impact-toughening mechanism of the tricomponent blend was proposed.  相似文献   

17.
The dynamic mechanical studies, impact resistance, and scanning electron microscopic studies of ethylene propylene diene terpolymer–poly(vinyl chloride) (EPDM–PVC) and methyl methacrylate grafted EPDM rubber (MMA‐g‐EPDM)–PVC (graft contents of 4, 13, 21, and 32%) blends were undertaken. All the regions of viscoelasticity were present in the E′ curve, while the E″ curve showed two glass transition temperatures for EPDM–PVC and MMA‐g‐EPDM–PVC blends, and the Tg increased with increasing graft content, indicating the incompatibility of these blends. The tan δ curve showed three dispersion regions for all blends arising from the α, β, and Γ transitions of the molecules. The sharp α transition peak shifted to higher temperatures with increasing concentration of the graft copolymer in the blends. EPDM showed less improvement while a sixfold increase in impact strength was noticed with the grafted EPDM. The scanning electron microscopy micrographs of EPDM–PVC showed less interaction between the phases in comparison to MMA‐g‐EPDM–PVC blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1959–1968, 1999  相似文献   

18.
《国际聚合物材料杂志》2012,61(3-4):149-158
Abstract

Polylauryllactam was used to improve the impact strength of polyvinylchloride (PVC)/chlorinated polyethylene (CPE) blends without sacrificing their tensile properties. The enhancement of the impact strength increased with the increase of the CPE content in the PVC/CPE blends due to the formation of intermolecular hydrogen bonds among PVC, polylauryllactam and CPE macromolecules. A doubled impact strength of the PVC/CPE blend with 20 weight percent of CPE was obtained after the addition of 1.5 phr polylauryllactam. The PVC/CPE blends with polylauryllactam have a better dimensional stability compared with the PVC/CPE blends without the additive, according to their viscoelastic characteristics. Polylauryllactam shortened the processing time to reach a minimum melt viscosity in the processing of the PVC/CPE blends.  相似文献   

19.
Methyl methacrylate/2‐hydroxyethyl methacrylate/maleic anhydride terpolymer with various compositions was synthesized, characterized and investigated as a photostabilizer for rigid polyvinyl chloride (PVC). The chemical structure of the terpolymer MMA/HEMA/MA, was confirmed by ultraviolet–visible and FTIR, spectroscopy. The molecular weights of the terpolymer were determined by applying gel permeation chromatography. The stabilizing efficiency of the terpolymer was evaluated by the determination of the weight loss of PVC/terpolymer blends after various irradiation times. The content of the formed gel as well as the intrinsic viscosity of the soluble fraction of the photodegraded polymer were also determined. The efficiency was also evaluated by measuring the extent of the discoloration of the photodegraded polymer. Thermal gravimetric analysis of the terpolymer and PVC/terpolymer blend were measured. Moreover, physicomechanical properties of photodegraded stabilized PVC samples were as well measured. The results revealed that the photostabilizing efficiency as well as thermal stability increased in the presence of the terpolymer as blended with PVC and by the increase of maleic anhydride ratio in the terpolymer. The photostabilizing efficiencies were compared with the industrially known UV absorber 2‐hydroxy‐4‐(octyloxy) phenylbenzophenone. J. VINYL ADDIT. TECHNOL., 25:E55–E62, 2019. © 2018 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号