首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
OCI-5 encodes the rat homologue of glypican-3, a membrane-bound heparan sulfate proteoglycan that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome. OCI-5 and glypican-3 are 95% identical. It has been recently suggested that glypican-3 interacts with insulin-like growth factor-2 (IGF-2) and that this interaction regulates IGF-2 activity. We report here that we have transfected OCI-5 into two different cell lines, and we have not been able to detect an interaction between the OCI-5 proteoglycan produced by the transfected cells and IGF-2. On the other hand, we have found that OCI-5 interacts with FGF-2, as has already been shown for glypican-1. This interaction is mediated by the heparan sulfate chains of OCI-5 because it can be inhibited by heparin or by heparitinase.  相似文献   

3.
In vivo, fibroblast growth factor-2 (FGF-2) inhibits longitudinal bone growth. Similarly, activating FGF receptor 3 mutations impair growth in achondroplasia and thanatophoric dysplasia. To investigate the underlying mechanisms, we chose a fetal rat metatarsal organ culture system that would maintain growth plate histological architecture. Addition of FGF-2 to the serum-free medium inhibited longitudinal growth. We next assessed each major component of longitudinal growth: proliferation, cellular hypertrophy, and cartilage matrix synthesis. Surprisingly, FGF-2 stimulated proliferation, as assessed by [3H]thymidine incorporation. However, autoradiographic studies demonstrated that this increased proliferation occurred only in the perichondrium, whereas decreased labeling was seen in the proliferative and epiphyseal chondrocytes. FGF-2 also caused a marked decrease in the number of hypertrophic chondrocytes. To assess cartilage matrix synthesis, we measured 35SO4 incorporation into newly synthesized glycosaminoglycans. Low concentrations (10 ng/ml) of FGF-2 stimulated cartilage matrix production, but high concentrations (1000 ng/ml) inhibited matrix production. We conclude that FGF-2 inhibits longitudinal bone growth by three mechanisms: decreased growth plate chondrocyte proliferation, decreased cellular hypertrophy, and, at high concentrations, decreased cartilage matrix production. These effects may explain the impaired growth seen in patients with achondroplasia and related skeletal dysplasias.  相似文献   

4.
Induction of the fibroblast growth factor-2 (FGF-2) gene and the consequent accumulation of FGF-2 in the nucleus are operative events in mitotic activation and hypertrophy of human astrocytes. In the brain, these events are associated with cellular degeneration and may reflect release of the FGF-2 gene from cell contact inhibition. We used cultures of human astrocytes to examine whether expression of FGF-2 is also controlled by soluble growth factors. Treatment of subconfluent astrocytes with interleukin-1beta, epidermal or platelet-derived growth factors, 18-kDa FGF-2, or serum or direct stimulation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate or adenylate cyclase with forskolin increased the levels of 18-, 22-, and 24-kDa FGF-2 isoforms and FGF-2 mRNA. Transfection of FGF-2 promoter-luciferase constructs identified a unique -555/-513 bp growth factor-responsive element (GFRE) that confers high basal promoter activity and activation by growth factors to a downstream promoter region. It also identified a separate region (-624/-556 bp) essential for PKC and cAMP stimulation. DNA-protein binding assays indicated that novel cis-acting elements and trans-acting factors mediate activation of the FGF-2 gene. Southwestern analysis identified 40-, 50-, 60-, and 100-kDa GFRE-binding proteins and 165-, 112-, and 90-kDa proteins that interacted with the PKC/cAMP-responsive region. The GFRE and the element essential for PKC and cAMP stimulation overlap with the region that mediates cell contact inhibition of the FGF-2 promoter. The results show a two-stage regulation of the FGF-2 gene: 1) an initial induction by reduced cell contact, and 2) further activation by growth factors or the PKC-signaling pathway. The hierarchic regulation of the FGF-2 gene promoter by cell density and growth factors or PKC reflects a two-stage activation of protein binding to the GFRE and to the PKC/cAMP-responsive region, respectively.  相似文献   

5.
We have examined the binding of FGF-2 to ribosomes and have found that in NIH 3T3 cells that synthesize high amounts of all FGF-2 forms, both 18 kDa and HMW forms of FGF-2 bind to ribosomes. Ribosomes purified from these cells were treated with RNase or puromycin to identify the binding site of FGF-2 on the ribosome. Neither RNase nor puromycin treatment affected the in vivo binding of FGF-2 to ribosomes suggesting that FGF-2 binds ribosomal protein or rRNA, but not mRNA. The stoichiometry of binding in these cells was approximately 1 FGF-2 molecule bound per 1 ribosome. Binding was unaffected by high salt treatment indicating that FGF-2 tightly associates with polysomes. An in vitro binding experiment performed with purified ribosomes and recombinant FGF-2 suggested that the binding site is saturable. HBNF, a protein with similar charge and size to FGF-2, bound 15-fold less than FGF-2 to purified ribosomes. These results indicate that the binding of FGF-2 to ribosomes is specific.  相似文献   

6.
Fibroblast growth factor-2 (FGF-2) is released from mesangial cells in experimental mesangioproliferative glomerulonephritis induced with anti-Thy 1.1 antibody. To investigate the functional role of released FGF-2, rats received either neutralizing anti-FGF-2 IgG or a functional peptide antagonist of FGF-2 (FGF119-126) before or shortly after induction of anti-Thy 1.1 nephritis. In additional experiments, rats were treated with bolus injections of FGF-2 from 2 to 6 h after disease induction. The data showed that anti-FGF-2 therapy led to significant reductions of early mesangial cell injury (mesangiolysis, microaneurysm formation) and the subsequent mesangioproliferative changes (glomerular de novo expression of alpha-smooth muscle actin, mesangial cell proliferation, matrix accumulation, and platelet influx). Conversely, injections of FGF-2 augmented both mesangial injury and the subsequent mesangioproliferative changes. Studies on the mechanisms underlying the amplification of mesangial cell injury by FGF-2 showed that anti-FGF-2 therapy reduced cell death at 2 and 8 h after disease induction by 58 and 54%, respectively. This was associated with significant reductions in the number of glomerular H2O2- and OH -producing cells, as well as reduced glomerular production of nitric oxide. These data suggest that release of constitutively expressed FGF-2 after immune-mediated cell injury contributes to glomerular cell damage and thus identify FGF-2 as a novel mediator of cytotoxicity.  相似文献   

7.
Basic fibroblast growth factor (FGF-2) influences the differentiation and survival of retinal photoreceptors in vivo and in vitro, but it is not known whether it acts directly on photoreceptor FGF receptors or indirectly through activation of surrounding cells. To clarify the effects of FGF-2 on photoreceptor survival, we developed a purified photoreceptor culture system. The outer nuclear layers of postnatal day 5-15 rat retinas were isolated by vibratome sectioning, and the photoreceptor fractions obtained were enzymatically dissociated. Photoreceptors were maintained in monolayer culture for 1 week in a chemically defined medium. Immunocytochemical labeling showed that >99.5% of cells were photoreceptors, and glial contamination represented approximately 0. 2%. Photoreceptors from postnatal day 5-9 retinas survived for at least 24 hr in vitro, whereas cells from postnatal day 10-15 retinas died rapidly. Subsequent studies performed with postnatal day 5 photoreceptors showed that their survival was increased in a dose-dependent manner after the addition of FGF-2. In control cultures, 36% of originally seeded photoreceptors were alive after 5 d in vitro, and in the presence of 20 ng/ml FGF-2 this number was doubled to 62%. This increase was not caused by proliferation of photoreceptor precursors. Denaturing or blocking FGF-2 prevented enhancement of survival. Conversely, only 25.5% of photoreceptors survived in the presence of epidermal growth factor (EGF). FGF- and EGF-receptor mRNA and proteins were detected in purified photoreceptors in vitro, and addition of FGF-2 or EGF led to tyrosine phosphorylation of photoreceptor proteins. These data support a direct mechanism of action for FGF-2 stimulation of photoreceptor survival.  相似文献   

8.
9.
PURPOSE: Corneal endothelial modulation factor (CEMF) released by inflammatory cells induces de novo synthesis of fibroblast growth factor (FGF)-2, which is a morphogen and a potent mitogen of corneal endothelial cells (CECs). Four isoforms of FGF-2 have been found in the nucleus, cytoplasm, or extracellular matrix (ECM) in different cell lines. In the present study, the profiles of the isoforms of FGF-2 that are induced by CEMF were investigated, and whether the differential localization of the isoforms of FGF-2 plays a role in CECs proliferation and subsequent modulation was examined. METHODS: Nuclear, cytoplasmic, and ECM fractions of normal and modulated CECs were separated, and FGF-2 isoforms were further purified by heparin-Sepharose column. The molecular sizes of the isoforms were determined by immunoblot analysis, using a specific antibody directed against FGF-2. Cell proliferation was determined by cell counting. Cellular localization of FGF-2 was determined by immunofluorescence staining during different stages of cell growth. RESULTS: To confirm that CEMF modulated CECs under the conditions used in this study, its effect on cell proliferation and cell shape was determined: CEMF-treated cells showed enhanced cell proliferation profiles and fibroblastlike morphology. In rapidly growing normal CECs, FGF-2 was predominantly present in the nucleus. As the cells reached confluence, the staining potential in the nucleus was markedly reduced. Cytoplasmic staining of FGF-2 was barely detectable, regardless of cell stages. In CEMF-modulated cells, the rapidly growing cells showed strong staining of FGF-2 in the nucleus, whereas cytoplasmic and ECM staining was weak. When modulated cells reached confluence, the staining of FGF-2 in the nuclei remained strong, whereas ECM staining was significantly increased. Immunoblot analysis of the subcellular fraction showed that the 24-kDa FGF-2 was predominantly present in the nucleus, whereas the 18-kDa form was the major molecule in cytoplasmic and ECM fractions in normal and modulated cells. CONCLUSIONS: These findings indicate that 24-kDa nuclear FGF-2 may be involved in cell proliferation in growing CECs. The persistent nuclear localization and simultaneous ECM localization of FGF-2 are induced by CEMF, and these FGF-2 isoforms seem to play a role in cell proliferation and modulation.  相似文献   

10.
Structure and expression of human fibroblast growth factor-10   总被引:2,自引:0,他引:2  
We isolated the cDNA encoding a novel member of the human fibroblast growth factor (FGF) family from the lung. The cDNA encodes a protein of 208 amino acids with high sequence homology (95.6%) to rat FGF-10, indicating that the protein is human FGF-10. Human FGF-10 as well as rat FGF-10 has a hydrophobic amino terminus ( approximately 40 amino acids), which may serve as a signal sequence. The apparent evolutionary relationships of human FGFs indicate that FGF-10 is closest to FGF-7. Chromosomal localization of the human FGF-10 gene was examined by in situ hybridization. The gene was found to map to the 5p12-p13 region. Human FGF-10 (amino acids 40 to 208 with a methionine residue at the amino terminus) was produced in Escherichia coli and purified from the cell lysate. Recombinant human FGF-10 (approximately 19 kDa) showed mitogenic activity for fetal rat keratinizing epidermal cells, but essentially no activity for NIH/3T3 cells, fibroblasts. The specificity of mitogenic activity of FGF-10 is similar to that of FGF-7 but distinct from that of bFGF. In structure and biological activity, FGF-10 is similar to FGF-7.  相似文献   

11.
Proteins of the fibroblast growth factor (FGF) family play diverse roles in embryonic development, angiogenesis, and wound healing. The most well studied targets of FGF activity typically are cells of mesodermal and neuroectodermal origin; in addition, expression of FGF-1 (acidic FGF) is increased at several sites of chronic immunologic injury, and recent studies show that FGF-1 also may interact with cells of the immune system. In some human T cells, FGF-1 can induce signals necessary for production of interleukin-2, a key cytokine required for T cell proliferation. To better characterize the interaction of FGF-1 with FGF receptors on T cells, a fusion protein was constructed containing a portion of the constant region of human IgG1 (Fc) at the amino terminus of FGF-1. The Fc-FGF-1 fusion protein retained FGF function as determined by stimulation of tyrosine phosphorylation and DNA synthesis in NIH 3T3 cells. Binding of the intact fusion protein to FGF receptor 1 (FGFR1) on T cells was demonstrated by immunoprecipitation of the receptor bound to Fc-FGF-1 and by flow cytometry showing binding of fusion protein to T cells expressing FGFR1. This functional Fc-FGF-1 protein should prove useful in identifying FGFR-expressing cells.  相似文献   

12.
Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1–5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Bone formation is linked closely to angiogenesis. Because prostaglandin E2 (PGE2) is a potent stimulator of bone formation, its effects were evaluated on vascular endothelial growth factor, a secreted endothelial cell-specific mitogen, and a potent angiogenic protein. Prostaglandin E2 increased vascular endothelial growth factor protein in conditioned media of osteoblastic RCT-3 cells within 3 hours. Prostaglandin E2 also increased the steady-state levels of vascular endothelial growth factor mRNA in a dose-dependent manner. The increased expression of vascular endothelial growth factor mRNA produced by PGE2 was rapid (maximal at 1 hour) and was enhanced by the protein synthesis inhibitor cycloheximide (5 micrograms/ml). The increase in vascular endothelial growth factor mRNA by PGE2 was inhibited strongly by pretreatment for 3 hours with dexamethasone (10(-7) M). Stimulation of vascular endothelial growth factor by PGE2 and its suppression by dexamethasone implicate the involvement of vascular endothelial growth factor in bone metabolism.  相似文献   

14.
By using p65 synaptotagmin-1 and fibroblast growth factor (FGF)-1:beta-galactosidase (beta-gal) NIH 3T3 cell co-transfectants, we demonstrate that a proteolytic fragment consisting of the extravesicular domain of synaptotagmin-1 is released into the extracellular compartment in response to temperature stress with similar kinetics and pharmacological properties as FGF-1:beta-gal. Using a deletion mutant that lacks 95 amino acids from the extravesicular domain of synaptotagmin-1, neither synaptotagmin-1 nor FGF-1:beta-gal are able to access the stress-induced release pathway. Furthermore, the p40 extravesicular fragment of synaptotagmin-1 is constitutively released in p40 synaptotagmin-1 NIH 3T3 cell transfectants, and this release is potentiated when the cells are subjected to temperature stress. These data demonstrate that the p40 fragment derived from synaptotagmin-1 is able to utilize the FGF-1 non-classical exocytotic pathway and that the release of FGF-1 is dependent on synaptotagmin-1.  相似文献   

15.
Proteoglycans have been shown in vitro to bind multiple components of the cellular microenvironment that function during wound healing. To study the composition and function of these molecules when derived from an in vivo source, soluble proteoglycans released into human wound fluid were characterized and evaluated for influence on fibroblast growth factor-2 activity. Immunoblot analysis of wound fluid revealed the presence of syndecan-1, syndecan-4, glypican, decorin, perlecan, and versican. Sulfated glycosaminoglycan concentrations ranged from 15 to 65 microgram/ml, and treatment with chondroitinase B showed that a large proportion of the glycosaminoglycan was dermatan sulfate. The total glycosaminoglycan mixture present in wound fluid supported the ability of fibroblast growth factor-2 to signal cell proliferation. Dermatan sulfate, and not heparan sulfate, was the major contributor to this activity, and dermatan sulfate bound FGF-2 with Kd = 2.48 microM. These data demonstrate that proteoglycans released during wound repair are functionally active and provide the first evidence that dermatan sulfate is a potent mediator of fibroblast growth factor-2 responsiveness.  相似文献   

16.
Neurons and glia are generated throughout adulthood from proliferating cells in two regions of the rat brain, the subventricular zone (SVZ) and the hippocampus. This study shows that exogenous basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF) have differential and site-specific effects on progenitor cells in vivo. Both growth factors expanded the SVZ progenitor population after 2 weeks of intracerebroventricular administration, but only FGF-2 induced an increase in the number of newborn cells, most prominently neurons, in the olfactory bulb, the normal destination for neuronal progenitors migrating from the SVZ. EGF, on the other hand, reduced the total number of newborn neurons reaching the olfactory bulb and substantially enhanced the generation of astrocytes in the olfactory bulb. Moreover, EGF increased the number of newborn cells in the striatum either by migration of SVZ cells or by stimulation of local progenitor cells. No evidence of neuronal differentiation of newborn striatal cells was found by three-dimensional confocal analysis, although many of these newborn cells were associated closely with striatal neurons. The proliferation of hippocampal progenitors was not affected by either growth factor. However, EGF increased the number of newborn glia and reduced the number of newborn neurons, similar to the effects seen in the olfactory bulb. These findings may be useful for elucidating the in vivo role of growth factors in neurogenesis in the adult CNS and may aid development of neuronal replacement strategies after brain damage.  相似文献   

17.
One type of maturity-onset diabetes of the young (MODY2) is caused by mutations in the glucokinase gene, a key glycolytic enzyme in the beta cell and liver. Glucose fails to stimulate insulin secretion in mice in which the glucokinase gene has been selectively knocked out in the beta cell. We tested the hypothesis that this effect results from defective metabolic regulation of beta cell ATP-sensitive potassium (K(ATP)) channels. Glucose had little effect on K(ATP) currents in homozygous (-/-) mice but inhibited K(ATP) currents in wild-type (+/+) and heterozygous (+/-) mice with EC50 of 3.2 mM and 5.5 mM, respectively, in newborn animals, and of 4.7 mM and 9.9 mM, respectively, in 1.5-year-old mice. Glucose (20 mmol/l) did not affect the resting membrane potential of -/- beta cells but depolarised wild-type and + /- beta cells and induced electrical activity. In contrast, 20 mmol/l ketoisocaproic acid or 0.5 mmol/ l tolbutamide depolarised all three types of beta-cell. These results support the idea that defective glycolytic metabolism, produced by a loss (-/- mice) or reduction (+/- mice) of glucokinase activity, leads to defective K(ATP) channel regulation and thereby to the selective loss, or reduction, of glucose-induced insulin secretion.  相似文献   

18.
We have previously characterized the release of the signal peptide sequence-less fibroblast growth factor (FGF) prototype, FGF-1, in vitro as a stress-induced pathway in which FGF-1 is released as a latent homodimer with the p40 extravesicular domain of p65 synaptotagmin (Syn)-1. To determine the biologic relevance of the FGF-1 release pathway in vivo, we sought to resolve and characterize from ovine brain a purified fraction that contained both FGF-1 and p40 Syn-1 and report that the brain-derived FGF-1:p40 Syn-1 aggregate is associated with the calcium-binding protein, S100A13. Since S100A13 binds the anti-inflammatory compound amlexanox and FGF-1 is involved in inflammation, we examined the effects of amlexanox on the release of FGF-1 and p40 Syn-1 in response to stress in vitro. We report that while amlexanox was able to repress the heat shock-induced release of FGF-1 and p40 Syn-1 in a concentration-dependent manner, it had no effect on the constitutive release of p40 Syn-1 from p40 Syn-1 NIH 3T3 cell transfectants. These data suggest the following: (i) FGF-1 is associated with Syn-1 and S100A13 in vivo; (ii) S100A13 may be involved in the regulation of FGF-1 and p40 Syn-1 release in response to temperature stress in vitro; and (iii) the FGF-1 release pathway may be accessible to pharmacologic regulation.  相似文献   

19.
Fibroblast growth factor-1 (FGF-1) is a potent mitogen for mesoderm- and neuroectoderm-derived cell types in vitro. However, a mutant FGF-1 with deletion in its nuclear localization sequence (NLS, residues 21-27) is not mitogenic in vitro. We demonstrated that synthetic peptides containing this NLS were able to stimulate DNA synthesis in a FGF receptor-independent manner after they were delivered into living NIH 3T3 cells by a cell-permeable peptide import technique. The stimulation of maximal DNA synthesis by these peptides required the presence of peptides during the entire G1 phase of the cell cycle. The mitogenic effect was specific for the NLS of FGF-1 because a peptide with double point mutations at lysine residues was inactive in stimulating DNA synthesis. Our results suggest that the NLS plays an important role in the mitogenic pathway initiated by exogenous FGF-1 by its direct involvement in the nuclear transport and signaling of internalized FGF-1.  相似文献   

20.
Soils developed on serpentine rocks cover a large area in Albania which contains large reserves of iron, nickel, chromium and copper and is characterised by a high density of mines and metal smelters. This work was conducted to study the flora associated with serpentine and former industrial and mining sites in Albania. Eight sites were investigated in the south-eastern, central and northern parts of the country. Soils were sampled in the Ap horizon and plants were collected and identified. Plant material was allowed to dry before being ground. Soil and plant samples were analysed for total Ca, Cd, Co, Cr, Cu, Mg, Ni, Pb and Zn. Results showed that each site exhibited a high concentration of one or more metals. The maximum concentrations of metals in soils dry matter (DM) were 14 mg Cd kg-1, 476 mg Co kg-1, 3865 mg Cr kg-1, 1107 mg Cu kg-1, 3579 mg Ni kg-1, 172 mg Pb kg-1 and 2495 mg Zn kg-1. The Mg/Ca ratio in serpentine soils varied from 1 to 7.8. A collection of 58 plant species, members of 44 genera and 17 families, were collected. Alyssum markgrafii in the north and Alyssum murale in the south-eastern serpentines had a concentration of 1.26 and 0.85% Ni in DM, respectively. In the species Herniaria hirsuta, a serpentine plant, concentrations of 808 mg Ni kg-1 and 275 mg Cr kg-1 in DM were recorded. Other taxa (Filago, Inula, Picris, Galamintha, Marrubium, Teucrium, Lotus, Ononis and Xeranthemum) from serpentines had a high, but not exceptional Ni content. Some species collected on serpentines and industrial sites presented rather high concentrations of lead or copper in their above-ground parts, probably related to contamination by soil dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号