首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nanoparticle films of PdxWO3, with x being 0.01 or 0.12, were made by dual-beam gas evaporation. The stochastic signal component (fluctuation-enhanced signal) originating from resistance fluctuations and the dc resistance (classical sensor signal) were measured during exposure to ethanol and hydrogen gas. For ethanol concentrations exceeding 50 ppm, changes in the resistance fluctuations gave 300 times larger detection sensitivity than changes in the dc resistance.  相似文献   

2.
The resonance frequency of acoustic biosensors is today used as a label-free technique for detecting mass changes on sensor surfaces. In combination with an appropriate continuous flow system it has earlier been used for affinity and kinetic rate determination. Here, we assess the potential of a modified acoustic biosensor, monitoring also the real-time dissipation through the resistance of the sensor, to obtain additional kinetic information related to the structure and conformation of the molecules on the surface. Actual interaction studies, including an attempt to determine avidity, are presented along with thorough verification of the experimental setup utilizing true viscous load exposure together with protein and DNA immobilizations.True viscous loads show a linear relationship between resistance and frequency as expected. However, in the interaction studies between antibodies and proteins, as well as in the immobilization of DNA and proteins, higher surface concentrations of interacting molecules led to a decrease (i.e. deviation from the linear trend) in the differential resistance to frequency ratio. This is interpreted as increased surface rigidity at higher surface concentrations of immobilized molecules. Consequently, studies that aim at obtaining biological binding information, such as avidity, from real-time resistance and dissipation data should be conducted at low surface concentrations. In addition, the differential resistance to frequency relationship was found to be highly dependent on the rigidity of the preceding layer(s) of immobilized molecules. This dependence can be utilized to obtain a higher signal-to-noise ratio for resistance measurement by using low surface densities of immobilized interaction partners.  相似文献   

3.
Poly(methyl methacrylate) (PMMA) nanofibers with different diameters were fabricated by electrospinning and their composites with polyaniline (PANI) were formed by virtue of in situ solution polymerization. The coaxial composite nanofibers so prepared were then transferred to the surface of a gold interdigitated electrode to construct a gas sensor. The structure and morphology of the PANI/PMMA composite fibers were characterized by UV–vis spectroscopy and scanning electron microscopy, which indicated that the coaxial nanofibres of PANI emeraldine salt and PMMA were successfully prepared. The electrical responses of the gas sensor based on the composite nanofibres towards triethylamine (TEA) vapors were investigated at room temperature. It was revealed that the sensor showed a sensing magnitude as high as 77 towards TEA vapor of 500 ppm. In addition, the responses were linear, reversible and reproducible towards TEA vapors ranging from 20 to 500 ppm. The diameters of the electrospun PMMA fibers had an effect on the sensing magnitude of the gas sensor, which is proposed to relate to the difference in the surface-to-volume ratio of the fibers. Furthermore, it was found that the concentration of doping acids only led to changes in resistance of the sensor, but could not affect its sensing characteristics. In contrast, the nature of the doping acids was determinative for the sensing magnitude of the sensor. The gas sensor with toluene sulfonic acid as the doping acid exhibited the highest sensing magnitude, which is explained by taking into account of the sensing mechanism and the interactions of doping acids with TEA vapor.  相似文献   

4.
Adsorbent and corrosion resistant films are useful for sensor development. Therefore, the aim of this work is the production and characterization of plasma polymerized fluorinated organic ether thin films for sensor development. The polymerized reactant was methyl nonafluoro(iso)butyl ether. Infrared Spectroscopy showed fluorinated species and eventually CO but CHn is a minor species. Contact angle measurements indicated that the film is hydrophobic and organophilic but oleophobic. Optical microscopy reveals not only a good adherence on metals and acrylic but also resistance for organic solvents, acid and basic aqueous solution exposure. Double layer and intermixing are possible and might lead to island formation. Quartz Crystal Microbalance showed that 2-propanol permeates the film but there is no sensitivity to n-hexane. The microreactor manufactured using a 73 cm long microchannel can retain approximately 9 × 10−4 g/cm2 of 2-propanol in vapor phase. Therefore, the film is a good candidate for preconcentration of volatile organic compounds even in corrosive environment.  相似文献   

5.
The artificially constructed materials based split ring resonators (SRRs) may have exotic electromagnetic properties and have received growing interest in recent years. Moreover, the resonance frequency shift of this material is extraordinarily sensitive to the changes in the capacitance of SRR, which makes SRR suit for microwave thin-film sensing applications. Based on such principle, the tip-shaped SRR metamaterial is presented as thin-film sensor in this paper to reduce device size and resonance frequency as well as to improve the Q-factor. The structure is placed inside an X-band waveguide with dimensions of 22.86 mm × 10.16 mm × 12.8 mm to investigate resonance frequency shift in different cases by numerical method. In contrast to the traditional structures, the tip-shaped design exhibits a miniaturization and sharper dip on resonance in their transmission spectra. Furthermore, the proposed sensor can deliver the sensitivity level of 16.2 MHz/μm and less than a 2 μm nonlinearity error when the uniform benezocyclobutene films from 100 nm to 50 μm thick are coated onto the fixed structure. These results indicate that the proposed thin-film sensor has high sensitivity and low nonlinearity error, and make it great promising application for wireless sensors in future.  相似文献   

6.

This paper presents the design of a highly sensitive surface acoustic wave (SAW)-based sensor with novel structure for the longitudinal strain measurement. The sensor utilizes thin lithium niobate (LiNbO3) diaphragm as the sensing element rather than the bulk substrate. The application of the diaphragm effectively decreases the cross-sectional area of the strain sensitive element, and meanwhile reduces the resistance between the sensor and the specimen. The newly designed strain sensor is to operate around a frequency of 50 MHz. The insertion loss of − 12 dB and quality factor of 63 are obtained analytically from impulse-response model. The sensor performance with tensile testing of the steel beam is predicted by the finite element method. The prestressed eigenfrequency analysis is conducted with the COMSOL commercial software. The simulation shows the resonance frequency of the sensor shifts linearly with the strain induced in the testing beam. For the SAW sensor with traditional configuration applying 1 mm thick substrate, the strain sensitivity is obtained as 0.41 ppm/με. For the sensor with the novel design employing thin diaphragm with the thickness of 200 μm, the strain sensitivity is increased to 0.83 ppm/με. With the availability of the bulk micromachining of LiNbO3, the application of the piezoelectric diaphragm as sensing element in SAW strain sensor can be an alternative way to enhance the sensor sensitivity.

  相似文献   

7.
Exposure to high frequency (kHz) vibration from impact power tools is overlooked in the ISO 5349-1 risk prediction for acquiring Hand Arm Vibration Syndrome. The biological effects of high frequency, power tool vibration have not been adequately studied. We characterized the magnitude and transmissibility of riveting hammer vibration in a rat tail model using a light weight piezoelectric sensor. The performance of the newly-introduced piezoelectric sensor was validated by showing its similarities to the previously published laser vibrometer. ISO 5349-1 frequency weighting revealed major risk from the 35 Hz component of the riveting hammer vibration, whereas the weighted values of the kHz components were not calculated to reach exposure action value in 24 h– However, the unweighted acceleration magnitudes at 12.4 and 16.3 kHz were about 10 and 50 times larger than the unweighted acceleration peak observed at 35 Hz. A transmissibility of <1 was calculated for 12.4 and 16.3 kHz, indicating tissue absorbance, while 35 Hz exhibited a transmissibility of 9.05, suggesting tissue resonance. The largest absolute change in acceleration was at 12.4 and 16.3 kHz, implicating that a considerable amount of high frequency vibration energy was absorbed by the tissue. A progressive reduction in intact sensory nerve endings was observed in the tissue when increasing vibration exposure from 1 min to 12 min.  相似文献   

8.
Abstract— We describe herein the construction of a simple, low-power, broadly responsive vapor sensor. Carbon-black-organic-polymer composites have been shown to swell reversibly upon exposure to vapors. Thin films of carbon-black-organic-polymer composites have been deposited across two metallic leads, with swelling-induced resistance changes of the films signaling the presence of vapors. To identify and classify vapors, arrays of such vapor-sensing elements have been constructed, with each element containing a different organic polymer as the insulating phase. The differing gas-solid partition coefficients for the various polymers of the sensor array produce a pattern of resistance changes that can be used to classify vapors and vapor mixtures. This type of sensor array has been shown to resolve all organic vapors that have been analyzed, and can even resolve H2O from D2O.  相似文献   

9.
Appreciable changes in resistance of polycrystalline nanosized CuNb2O6 upon exposure to reducing gases like hydrogen, liquefied petroleum gas (LPG) and ammonia in ambient atmosphere recognize the material as a gas sensor. Nanosized CuNb2O6 synthesized by thermal decomposition of an aqueous precursor solution containing copper nitrate, niobium tartrate and tri-ethanol amine (TEA), followed by calcination at 700 °C for 2 h, has been characterized using X-ray diffraction (XRD) study, transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analysis and Brunauer–Emmett–Teller (BET) surface area measurement. The synthesized CuNb2O6 exhibits monoclinic structure with crystallite size of 25 nm, average particle size of 25–40 nm and specific surface area of 55 m2 g−1.  相似文献   

10.
A micromachined chemoresistive gas sensor was studied from the point of view of heat distribution and thermal dissipation: this innovative device for environmental pollutant gas monitoring, is based on a sensitive film of semiconductor metal oxides, kept in temperature by a platinum resistor. In order to avoid electrical interactions between the film heater and the contacts for the film reading, the heater is driven by a square wave, and the film is read when no voltage is provided. Since the working temperature of the film is extremely important for its operation, it is crucial to maintain the temperature fluctuations within few degrees; to this end, in this work we study the heat distribution and dissipation of such a device, aiming to set a proper heating frequency, which will assure a right stability of the working temperature.  相似文献   

11.
CuO—ZnO异质结气体传感器是一种新型的气体传感器,它有成本低、工艺简单、检测方便等诸多优点。主要研究了CuO和ZnO不同比例情况下,该传感器的气敏性能。测试了它的阻温特性,及在不同温度、不同气氛条件下的灵敏度和响应特性,并从理论上对测试结果进行了分析和讨论。  相似文献   

12.
The response patterns of a temperature-modulated chemoresistive gas sensor were transformed to multi-exponential functions which facilitated the extraction of their discriminative features for gas diagnosis. The patterns were generated for air contaminated with different concentrations of various volatile organic compounds by applying a staircase heating voltage waveform to the microheater of a tin oxide-based sensor that modulated its operating temperature in the 50–400 °C range. Padé-Z transform was utilized for the transformation, and a novel heuristic procedure facilitated the extraction of the components of the feature vectors from the transformed data. These vectors were classified by the available techniques. The method differentiated the patterns generated for methanol, ethanol, 1-propanol, 1-butanol, and acetone contaminations in the wide concentration range examined. The method was also used to separately estimate the amount of the discriminative information in various steady state and transient response features; the results are anticipated to help design more elaborate temperature-modulated sensors for gas diagnosis.  相似文献   

13.
In order to detect the installation compressive stress and monitor the stress relaxation between two bending surfaces on a defensive furnishment, a wireless compressive-stress/relaxation-stress measurement system based on pressure-sensitive sensors is developed. The flexible pressure-sensitive stress sensor array is fabricated by using carbon black-filled silicone rubber-based composite. The wireless stress measurement system integrated with this sensor array is tested with compressive stress in the range from 0 MPa to 3 MPa for performance evaluation. Experimental results indicate that the fractional change in electrical resistance of the pressure-sensitive stress sensor changes linearly and reversibly with the compressive stress, and its fractional change goes up to 355% under uniaxial compression; the change rate of the electrical resistance can track the relaxation stress and give out a credible measurement in the process of stress relaxation. The relationship between input (compressive stress) and output (the fractional change in electrical resistance) of the pressure-sensitive sensor is ΔR/R0 = σ × 1.2 MPa?1. The wireless compressive stress measurement system can be used to achieve sensitivity of 1.33 V/MPa to the stress at stress resolution of 920.3 Pa. The newly developed wireless stress measurement system integrated with pressure-sensitive carbon black-filled silicone rubber-based sensors has advantages such as high sensitivity to stress, high stress resolution, simple circuit and low energy consumption.  相似文献   

14.
G.  S.  S.  L.  K.S.V.   《Sensors and actuators. B, Chemical》2009,142(1):147-151
Baytron P–Si chip was made by depositing Baytron P onto a gap of two parallel gold plates on a silicon wafer separated by 150 μm such that the gold plates contact the polymer only in the gap region. The resistance of the polymer was examined at ambient room temperature before and after the exposure of the chip to different concentrations of methane or its derivatives such as chloroform, carbon tetrachloride and methylene chloride. The chip response to methane gas opens up the prospects of its usage at ambient temperature for the industrial and environmental detections in the range of 200–1300 ppm. Among the derivatives of methane, methylene chloride showed the highest response for detection. The mechanism of sensing is discussed.  相似文献   

15.

Fusion of the transduction mechanism in micro and macro nanopores of porous silicon (PS) was employed to fabricate an MEMS-based aliphatic alcohol impedance sensor. The presence of a nanopore network on silicon was confirmed by the SEM image. The morphology of the PS nanopores was roughly distributed in a uniform manner. The performance of the sensor was studied using Impedance spectroscopy at room temperature. Electrochemical impedance spectroscopy and an equivalent circuit analysis of the small amplitude (± 10 mV) AC impedance measurements (frequency range 0.1 Hz–1 kHz) at ambient temperature were carried out. The Sensing layer consists of nanopores (45.30–71.13 nm), micropores (0.95–5 µm), and comb type alumina electrodes with the micro PS layer having a thickness of about 0.2 µm and the macro PS layer having a thickness of about 4 µm. These results were used to assess the effect of the micro PS and macro PS of the particulate layer on the conductivity of the given aliphatic gases. The measured impedance was approximately 2.3e5 for the micro PS, and 3.22e5 macro PS for 8 ppm of gas injected into the gas chamber. The grain boundary resistance increases with an increase in the concentration of butane, benzene, and methane, which ranges from 2 to 16 ppm.

  相似文献   

16.
A PPY/SWCNTs nanocomposite-based sensor with relatively high sensitivity and fast response–recovery was developed for detection of NH3 gas at room temperature. The gas-sensitive composite thin film was prepared using chemical polymerization and spin-coating techniques, and characterized by Fourier transformed infrared spectra and field-emission scanning electron microscopy. The results reveal that the conjugated structure of the PPY layer was formed and the functionalized SWCNTs were well-embedded. The effects of film thickness, annealing temperature, and SWCNTs content on gas-sensing properties of the composite thin film were investigated to optimize the gas-sensing performance. The as-prepared thin film PPY/SWCNTs composite sensor with optimized process parameters had a response of 26–276% upon exposure to NH3 gas concentration from 10 to 800 ppm, and their response and recovery times were around 22 and 38 s, respectively.  相似文献   

17.
Uneven energy consumption is an inherent problem in wireless sensor networks characterized by multi-hop routing and many-to-one traffic pattern. Such unbalanced energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of prolonging network lifetime in large-scale wireless sensor networks where a mobile sink gathers data periodically along the predefined path and each sensor node uploads its data to the mobile sink over a multi-hop communication path. By using greedy policy and dynamic programming, we propose a heuristic topology control algorithm with time complexity O(n(m + n log n)), where n and m are the number of nodes and edges in the network, respectively, and further discuss how to refine our algorithm to satisfy practical requirements such as distributed computing and transmission timeliness. Theoretical analysis and experimental results show that our algorithm is superior to several earlier algorithms for extending network lifetime.  相似文献   

18.
Luminescence response of ZnO nanowires to gas adsorption   总被引:1,自引:1,他引:0  
C.  S.  G.  E.  G.  S.  L.  P.   《Sensors and actuators. B, Chemical》2009,140(2):461-466
Zinc oxide nanowires were synthesized by means of evaporation–condensation technique and their green photoluminescence emission at room temperature was studied during exposure to nitrogen dioxide, ethanol and humidity. A reversible modification of static photoluminescence efficiency was obtained upon exposure to low concentrations of nitrogen dioxide. The optical sensor was able to detect NO2 values as low as 0.1 ppm in dry air, that is the attention level for outdoor detection. Time-resolved photoluminescence measurements in presence of NO2 showed small modification of recombination rates and lifetimes due to introduction of quencher gas. The results support a surface static quenching model, according to which the gas molecules suppress a fraction of radiative transitions instead of merely reducing their probabilities.  相似文献   

19.
Porous gas sensing films composed of TiO2 nanotubes were fabricated for the detection of volatile organic compounds (VOCs), such as alcohol and toluene. In order to control the microstructure of TiO2 nanotubular films, ball-milling treatments were used to shorten the length of TiO2 nanotubes and to improve the particle packing density of the films without destroying their tubular morphology and crystal structure. The ball-milling treatment successfully modified the porosity of the gas sensing films by inducing more intimate contacts between nanotubes, as confirmed by scanning electron microscopy (SEM) and mercury porosimetry. The sensor using nanotubes after the ball-milling treatment for 3 h exhibited an improved sensor response and selectivity to toluene (50 ppm) at the operating temperature of 500 °C. However, an extensive ball-milling treatment did not enhance the original sensor response, probably owing to a decrease in the porosity of the film. The results obtained indicated the importance of the microstructure control of sensing layers in terms of particle packing density and porosity for detecting large sized organic gas molecules.  相似文献   

20.
The purpose of this study is to fabricate a stainless steel protector for a weak fiber sensor after first stripping the polymer outer-layer off the fiber. In addition to protecting the fiber sensor, the stainless steel protector is required to connect the detection target and the sensor which requires drilling holes in the protector. We accomplished this by electrochemical micromachining the stainless steel protector using pulse DC, using 1 kV/m, 6.62% weight concentration of NaCl electrolyte solution, 500 rpm anode rotating rate, a 5 MHz pulse frequency, a 50% duty factor, and 6 min of machining time with a ring cathode gave the best results, producing an average hole-radius of 231.36 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号