首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strain ofPenicillium bilaji Chalabuda (PB) has recently been commercially released as a seed inoculant to increase phosphorus (P) uptake by wheat (Triticum aestivum L.). The purpose of this study was to compare the effects of drill applied P (15 kg P ha–1) with PB seed inoculation on early growth, development, P uptake, and grain yield of Stoa spring wheat at four sites in North Dakota.Fertilization with P consistently enhanced early season growth, main stem development, tillering and P uptake. Seed inoculation with PB had little or no effect on these traits. Phosphorus fertilization tended to increase common root rot severity (CRR, incited byCochliobolus sativus (Ito & Kurib) Drechs.), while PB inoculation had no effect. Grain yields were significantly increased by P fertilization at one location. Inoculation with PB also increased grain yield at this location. The reason why PB inoculation increased yield at this location is not evident, as plant growth and P uptake were not enhanced earlier in the season. Averaged across all four sites, PB inoculation increased wheat yields 66 kg ha–1, which is similar to averaged yield responses reported from the Prairie Provinces of Canada.  相似文献   

2.
The impact of long-term fertilization with inorganic P was studied in soil profiles (0–100 cm) from five sites in Sweden. Accumulation of P was studied by comparing P extracted with ammonium lactate/acetic acid (P-AL) and NaHCO3 (Olsen-P) in non-fertilized and fertilized soil profiles. The fertilized soils had received 42–49 kg P ha–1y–1 for more than 30 years. P-AL and Olsen-P were significantly higher in the fertilized than in the non-fertilized profiles down to 40 cm depth. The P sorption index (PSI2) based on a single-point P addition of 50 mmol P kg–1 soil was used to estimate P sorption capacity in the soils. The variation in PSI2 with depth was not consistent between the five soil profiles. PSI2 did not vary with depth in one soil, while it decreased in one and increased in the other three, and it was weakly but significantly correlated with the sum of Fe and Al extracted with ammonium oxalate (Feox +Alox) (r = 0.65**) and with clay content (r = 0.69***). To estimate P release in the soils, P was extracted with CaCl2 (CaCl2-P) and water (Pw). CaCl2-P and Pw were significantly higher in the fertilized treatment than in the non-fertilized treatment in the top 20 cm. Below 30 cm depth, CaCl2-P was very low in all soils, while Pw was relatively high in two soils and low in the other three soils. To estimate the degree of P saturation, the ratio of P-AL/PSI2 and Olsen-P/PSI2 was calculated. P-AL/PSI2 was significantly higher in the fertilized treatment in the 0–20 cm layer, while Olsen-P/PSI2 was significantly higher in the fertilized treatment in the 0–40 cm layer. P-AL/PSI2 was correlated with CaCl2-P and Pw when all soils and horizons were included (r0.78***), but the correlation increased markedly when only 0–40 cm was included (r0.94***). Olsen-P/PSI2 was well correlated with CaCl2-P and Pw (r0.94***) for all soils and depths. Thus the two indices, P-AL/PSI2 and Olsen-P/PSI2, were comparable in their ability to predict P release in the top 40 cm, whereas Olsen-P/PSI2 was better when all depths were included. The overall conclusion was that P fertilization had an impact on P properties down to 40 cm depth, while the effects were small below this depth.  相似文献   

3.
Wheat was grown continuously in soil amended with 5 levels of superphosphate and with 4 levels of urea at 3 sites. The incidence and severity of take-all, caused byGaeumannomyces graminis var.tritici, declined with increasing rates of application of both superphosphate and urea.In both years, the severity of take-all on plants receiving neither superphosphate nor urea was about 40% while at the highest level of superphosphate and urea supply the take-all severity was approximately halved at 22%.There was an increase in grain yield in response to applied superphosphate and urea to the highest level of each nutrient. There was also an increase in the 1,000-kernal weights with superphosphate and urea fertilizer application.  相似文献   

4.
Field trials were conducted during the 1980–82 seasons to study the response dryland sorghum to nitrogen and phosphorus fertilization in a ferruginous tropical soil. Treatments tested were factorial combinations of three rates of nitrogen (0, 60 and 120 kg N ha–1) and four rates of phosphorus (0, 11, 22 and 33 kg P ha–1). Grain and straw yields and yield components were enhanced by nitrogen fertilization in two out of three years. The optimum N rate for grain yield was 60 kg N ha–1 while straw yield responded up to 120 kg N ha–1. The optimum P rate for dryland sorghum was 11 kg P ha–1. Both N and P enhanced grain weight per head, grain number, test weight and tillering significantly but it was only N which enhanced 1000-grain weight and flag leaf area. Dry matter productin was increased by N fertilization but not by P. There were no significant N × P interactions for any of the parameters studied. Dryland sorghum response to N and P fertilization was influenced by season, time of planting and rainfall distribution.  相似文献   

5.
Yield responses of rice (Oryza sativa L. cv JD1187)to variable rates and combinations of fertilizer nitrogen (N) and phosphorus(P), to available soil N and P, and to cation exchange capacity (CEC) wereexamined in 41 field trials. The trial sites were located in the rice-growingregion of Hebei Province, Northern China, covering a diversity of soilfertilitylevels. Relationships between crop yields, fertilizer rates and soil nutrientsupply were established using an orthogonal polynomial model. The optimumeconomic fertilizer rates at different levels of soil N and P supply wereestimated by using fertilizer-yield response functions and soil properties foraparticular site. A difference in trend coefficients, reflecting yield responseto fertilizer, was observed, which was mainly dependent on variance of soilfertility across 41 experimental sites under the relatively consistent climateand farming practice. The results of correlation analysis showed that there wasa positive correlation between trend coefficient T0 and yieldwithoutfertilizer (Y0) (r = 0.80**). Trend coefficientT1, the major effect of N fertilizer on yield, showed negativerelationships with the quadratic transformation of alkali-hydrolysable N(Ns) and CEC (r = –0.60**). Trend coefficientT2, the major effect of P fertilizer on yield, had negativerelationships with the logarithmically transformed data of soilNaHCO3-extractable P (Ps) (r = –0.57**).Trend coefficients T3, T4 and T5, representinglinear interaction of N and P, and quadratic trend of N and P, respectively,showed no significant correlation with soil fertility variables. Yieldresponsesto N and P fertilizers, optimum economic fertilizer rates and gross profit fromfertilization decreased with increase in available soil N and P, and CEC. Themodel was validated in 19 field trials. The results suggest that the modeldeveloped in this study can reasonably predict optimum economic fertilizerratesthrough routine soil tests in the rice production region. The model can also beextrapolated to other regions and include other variable factors, provided thatnew relationships between yield response to fertilizer and site variables areestablished and incorporated into the model.  相似文献   

6.
The effect of different irrigation frequencies (5, 7 and 9 days interval) and N rates (0, 50, 100 and 150 kg N ha–1) on applied N in tomato was studied in a field experiment during 3 growing seasons. The application of 100 kg N ha–1 with irriga tion scheduled at 7 days interal resulted in significantly higher N uptake and recovery rate than the other combinations of N rate and irrigation frequencies studied.  相似文献   

7.
The residual effectiveness of copper (Cu) applied 18 to 21 years previously was estimated for grain yield of wheat. In one field experiment, current levels of Cu fertiliser were applied and its effectiveness was compared to that of the same level of Cu applied previously. The effects of nitrogen (N) fertiliser on the Cu concentration in the youngest emerged blade and in the grain, as well as the effects of N levels on the grain yield of wheat, were also studied.Where the recommended level of Cu fertiliser had been applied previously, its residual effectiveness depended on the soil type. On the grey sands over clay and gravelly sands over clay, the residual Cu would last approximately 20 years where wheat is grown in rotation with a legume crop (Lupinus augustifolius L.) and where N fertiliser is applied at high levels (92 kg N ha–1). On the yellow brown sandy earths of the Newdegate district, the residual value was in excess of 30 years.When Cu levels in the soil are marginal, high levels of N applied to wheat crops grown on stubbles of legume crops (high soil N) could suffer from induce Cu deficiency which could reduce grain production.Critical concentrations of Cu in the youngest emerged blade of less than 1.2 mg Cu kg–1 at Gs50–59 would indicate Cu deficiency. Cu concentrations of less than 1.1–1.2 mg Cu kg–1 in the grain suggest that the wheat crop is marginally supplied with Cu. In both situations, Cu fertiliser needs to be applied before the next crop.  相似文献   

8.
Soil core (0–2.5 and/or 0–10 cm) samples were taken from wheat no till, wheat-conventional till, and fallow-conventional till soybean cropping systems from July to October of 1989 and extracted with water in an autoclave. The soil extracts were analyzed for seven common phenolic acids (p-coumaric, vanillic,p-hydroxybenzoic, syringic, caffeic, ferulic, and sinapic; in order of importance) by high-performance liquid chromatography. The highest concentration observed was 4 g/g soil forp-coumaric acid. Folin & Ciocalteu's phenol reagent was used to determine total phenolic acid content. Total phenolic acid content of 0- to 2.5-cm core samples was approximately 34% higher than that of the 0- to 10-cm core samples. Phenolic acid content of 0- to 2.5-cm core samples from wheat-no till systems was significantly higher than those from all other cropping systems. Individual phenolic acids and total phenolic acid content of soils were highly correlated. The last two observations were confirmed by principal component analysis. The concentrations were confirmed by principal component analysis, tions of individual phenolic acids extracted from soil samples were related to soil pH, water content of soil samples, total soil carbon, and total soil nitrogen. Indirect evidence suggested that phenolic acids recovered by the water-autoclave procedure used came primarily from bound forms in the soil samples.The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned.  相似文献   

9.
Five field experiments are described which measured the effect of take-all on grain yield of wheat when 5 levels of manganese fertilizer were applied in a factorial combination with 5 different types of nitrogen fertilizer.Ammonium nitrogen fertilizer, either as ammonium sulphate or ammonium chloride, lowered the severity of take-all. By contrast, sodium nitrate had no effect on the incidence and severity of take-all. Ammonium chloride and ammonium sulphate were equally effective at controlling take-all, suggesting that the chloride or sulphate ion had little or no effect on the disease.Manganese sulphate decreased take-all severity at two trial sites. Where manganese was deficient, an application of manganese lowered the severity of take-all, had no effect on the incidence and increased the dry matter and grain yields of the wheat plants. There were no beneficial effects of applied manganese if the wheat plants were adequately supplied with soil manganese.The results suggest that take-all is more severe where plants are deficient in either manganese or nitrogen. The work also suggests that manganese deficiency is not necessarily the reason why the wheat plants grown on the acid soils of south-west Western Australia are prone to take-all.  相似文献   

10.
A balance sheet of P, S and K was constructed for a long-term trial which investigates the effects of three rates of superphosphate (9% P, 11% S) on pasture production on border-strip irrigated land grazed with sheep. A balance sheet of the inputs and outputs of P, S and K to the trial over a 38 year period showed that of the nutrients applied in fertiliser, only 51–59% of the P and 15–31% of the S were retained in the soil. Small amounts were lost in animal products (4–19% of the applied nutrients) but major losses were attributed to runoff of P as particulate matter (dung and soil particles) during irrigation and leaching of sulphate-S during irrigation. Losses of K from the site were small and had no effect on total soil K content. The distribution of soil nutrients across the border-strips was also investigated. The results showed that the concentrations of total soil P and S and exchangeable K were significantly greater at the sides of the irrigation borders than in the main strip area of pasture. This was caused by deposition of a disproportionate amount of dung and urine (and therefore nutrients) on the levees where the sheep tended to camp. It was calculated that with increasing superphosphate rates greater amounts of P were transferred to the levees due to the increased amounts of P being recycled via the animals (as a result of increased herbage P concentration, pasture production and stocking rate).  相似文献   

11.
Large amounts of nitrogen (N) fertiliser (150–200 kg N/ha) are currently being applied to perennial ryegrass (Lolium perenneL.) seed crops in New Zealand. Due to increasing requirements for efficient use of N fertilisers and minimising nitrate contamination of the environment, a field experiment was established using 15N-labelled fertiliser to follow the fate of applied N. Urea-15N was applied to a perennial ryegrass seed crop in April (30 kg N/ha), August (30 kg N/ha), September (60 kg N/ha) and October (60 kg N/ha). The urea-15N was applied in solution and watered in to minimise volatilisation loss. At the time of harvest (December), 9% of the applied 15N was in the seed, 29% in the straw, 19% in the roots and 39% in the soil organic matter. Losses of 15N were minimal as the N was applied in several applications, each one at a relatively low rate, and at times when leaching was unlikely to occur. Ryegrass plants used a greater proportion of the N applied in September and October (61–65%) compared with that applied in April (44%). Consequently more N was recovered from the soil in the autumn application (57%) than from the September and October applications (28–44%). The availability of the residual fertiliser N to a subsequent wheat (Triticum aestivum L.) crop was studied in a glasshouse experiment. The residual fertiliser N was present in the soil and ryegrass roots and stubble. The wheat plants only recovered 7–9% of this residual N. Most of the N taken up by the wheat came from the soil organic N pool. Overall, applying a total of 180 kg N/ha to the ryegrass appeared to have minimal direct impact on the environment. In the short term N not used by the ryegrass plants contributed to the soil organic N pool.  相似文献   

12.
A greenhouse study was conducted to determine if soil pH affects the requirement for water-soluble P and the tolerance of water-insoluble impurities in TSP fertilizers. Two commercial TSP fertilizers were selected to represent a range in phosphate rock sources and impurities. Phosphate fertilizer impurities were isolated as the water-washed fraction by washing whole fertilizers with deionized water. TSP fertilizers with various quantities of water-soluble P (1.2 to 99% water-soluble P) were simulated by mixing the water-washed fertilizer fractions or dicalcium phosphate (DCP) with reagent-grade monocalcium phosphate (MCP). The fertilizers were applied to supply 40 mg AOAC available P kg–1 to a Mountview silt loam (fine-silty, siliceous, thermic Typic Paleudults). Wheat (Triticum aestivum (L.)) was harvested at 49 and 84 days after planting. Soil pH values at the final forage harvest were 5.4±0.16 and 6.4±0.15. At a soil pH of 5.4, the TSP fertilizers required only 37% water-soluble P to reach maximum yields while at pH 6.4 the fertilizers required 63% water-soluble P. Results of this study show that higher levels of water -insoluble P can be tolerated in TSP fertilizers when applied to acid soils. Phosphorus uptake was not affected by soil pH, but for the mixtures containing the fertilizer residues the source having the lowest level of Fe and Al had a higher relative agronomic effectiveness.  相似文献   

13.
Little attention has been devoted to calibrating the soil tests for P in the field for crops grown under rainfed conditions in different soil types. Field experiments were conducted during the 1990 rainy season (June-September) at the ICRISAT Center, Patancheru (near Hyderabad), India on nearby Vertisol and Alfisol sites having a range in extractable P, for establishing relationships between extractable P and sorghum yield.In the Vertisol, 90% relative grain yield of sorghum was obtained at 2.8 mg kg–1 Olsen extractable P while in the Alfisol, 90% relative grain yield was achieved at 5.0 mg P kg–1 soil. These results suggest that a single critical limit of available P does not hold true for grain sorghum in the two soil types under similar agroclimatic conditions and that the critical limit is lower for the clayey Vertisol than the sandy Alfisol.  相似文献   

14.
Putative allelochemicals found in the soil of no-tillage and conventional-tillage wheat plots near Stillwater, Oklahoma, were obtained by a mild alkaline aqueous extraction procedure, bioassayed to determine their biological activity, purified, and analyzed with a capillary gas chromatography-mass spectrometry-data analysis system. The most significant inhibition was found in bioassays of extracts from soil collected immediately after harvest in June, July, and August. No-tillage soils produced significant inhibition during the rest of the year also. Mass spectrometry showed fatty acids as the most abundant compounds. However, when bioassayed authentic samples of the five free fatty acids showed no significant biological activity toward wheat.Journal Article No. 5650 of the Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078.  相似文献   

15.
Interactive effects of nitrogen (N) rates, seeding (S) rates and irrigation frequencies on grain yield and yield components of durum wheat were studied for four years under field conditions at Tulelake, California. Each year the experiment was conducted using a split-plot design with 4 irrigation frequencies as main plots and combinations of 5 N-rates (0 to 360 kg/ha) and 5 S-rates (50 to 250 kg/ha) as subplot treatments replicated 4 times. A quadratic response surface model (RSM) was used to study the effects of these treatments on grain yield and yield components (tillers/area, kernel number/spike, kernel weight/spike and 100-seed weight). The RSM was very effective for analysis and data reduction for estimating the optimum combinations of N and S for maximizing the grain yield and yield components. The N utilization and uptake efficiency increased with each irrigation treatment and peaked at irrigation treatment C. Both N and uptake utilization efficiency decreased with each increment of N-rate.In most cases, the effect of irrigation was independent of N and S. One irrigation at tillering increased grain yield and yield components significantly over only a preplant irrigation. The response of additional irrigations were comparatively small and significant only in some cases. Both N and S had significant effects on grain yield and yield components, however, the response of N was larger than that of S. With increasing N-rate, grain yield and tiller number increased with the expected peak beyond 360kg N ha–1 but the increments beyond 180 kg N ha–1 were of progressively smaller magnitude. The kernel number and kernel weight per spike also increased with N-rate giving a peak between 270 and 360 kg N ha–1. With increasing S grain yield and tiller number/area increased while kernel number and kernel weight per spike decreased progressively. It was impossible to maximize yield and yield components at a given combination of N, S, and irrigation. According to the model, grain yield and tiller number were maximized at the highest level of N and S, while kernel number and kernel weight/spike were maximized at the lowest S (50 kg ha–1) and about 314 kg N ha–1 under adequate water supply. On the basis of the findings of this study and output of the model, 180–360 kg N ha–1, 150–250 kg S ha–1 and two post-sowing irrigations (at tillering and at boot stage) in addition to a preplant irrigation was recommended for optimum yield. An additional irrigation might be required depending on the weather conditions during the grain filling period.  相似文献   

16.
The effect of water supply on the response of subterranean clover (Trifolium subterraneum), annual medic (Medicago polymorpha) and wheat (Triticum aestivum) to levels of phosphorus (P) applied to the soil (soil P) was studied in four glasshouse experiments. P was applied as powdered superphosphate. In one experiment, the effect on plant yield of P concentration in the sown seed (seed P) was also studied. There were two water treatments: the soil was returned to field capacity, by watering to weight, either daily (adequate water, W1) or weekly (water stress, W2). In three experiments: (i) P concentration or content (P concentration × yield) in plant tissue was related to plant yield, and (ii) soil samples were collected before sowing to measure bicarbonate-extractable P (soil test P) which was related to subsequent plant yields.Compared with W1, water stress consistently reduced yields of dried tops and the maximum yield plateau for the relationship between yield and the level of P applied, by up to 25 to 60% in both cases. Compared with W1, the effectiveness of superphosphate for producing dried tops decreased for W2 by 11 to 45%, for both freshly-applied and incubated superphosphate. Consequently in the field, water supply, which varies with seasonal conditions, may effect plant yield responses to freshly — and previously — applied P fertilizer.Seed P increased yields, for W1, by 40% for low soil P and 20% for high soil P; corresponding values for W2 were 20 and 12%. Consequently proportional increases due to seed P were smaller for the water-stressed treatment.The relationship between yield and P concentration or content (internal efficiency of P use) differed for W1 and W2, so that the same P concentration or content in tissue was related to different yields. Estimating the P status of plants from tissue P values evidently depends on water supply, which in the field, differs in different years depending on seasonal conditions.The relationship between yield and soil test P differed for W1 and W2. Predicting yields from soil test P can only provide a guide, because plant yields depend on both P and water supply, which in the field may vary depending on seasonal conditions.  相似文献   

17.
Effect of nitrogen and water uptake on yield of wheat   总被引:6,自引:0,他引:6  
For 2 years, field experiments were conducted to study the direct and interactive effects of water and nitrogen uptake at different growth stages on grain yield of wheat, grown on coarse textured alluvial soil of Ludhiana. Twelve treatments comprising 3 irrigation regimes and 4 rates of N were imposed. The N and irrigation regimes showed significant interaction, especially during the drier year. Grain yield was better explained with water uptake and N uptake, when partitioned over different growth stages than with total uptake. The sensitivity factor for water uptake was higher at the reproductive stage ( = 1.60) than at the vegetative ( = 1.05) and maturation ( = 0.38) stages. Contrary, yield was more sensitive to N uptake during the vegetative stage than the reproductive and the maturation stages. Sensitivity of grain yield to water uptake was higher at higher N application rates. Yield predictability was much better (R2 = 0.98) when N and water uptake at different growth stages were combined.  相似文献   

18.
The distribution and recovery of urea N (25 kg ha–1) applied in solution by low-flow furrow irrigation to wheat, direct-drilled in rows in 1.5m wide permanent beds of a red-brown earth, was determined using15N labelled fertilizer. This method of fertilizer application resulted in an uneven distribution of applied N across the soil bed. Fertilizer N was recovered mainly in the upper 0.15m horizon of the soil. Forty seven percent of the applied N was recovered in the soil and plants within 0.20m of the point of application. Recovery rapidly decreased with increasing distance from the furrow and less than 4% of the urea N was recovered by the plants in the fourth row, 0.67m from the middle of the furrow. The recovery of fertilizer N in the crop was 23, 28, 47 and 40% at 13, 32, 59 and 86 days, respectively; the corresponding total recovery in the crop plus soil was 77, 91, 87 and 75%; the mean being 83 ± 8%.The results suggest that with this method of fertilizer application and these soil properties the furrows should be less than 0.75m apart in order to get uniform distribution of the fertilizer.  相似文献   

19.
Hydroxamic acids (Hx) produced by some cereal crops have been associated with allelopathy. However, the release of Hx to the soil by the producing plant-an essential condition for a compound to be involved in allelopathy-has not been shown. GC and HPLC analysis of roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.) cultivars, with high Hx levels in their leaves, demonstrated the presence of these compounds in the roots of all cultivars analyzed and in root exudates of rye. Moreover, bioassays employing root exudates collected from wheat and rye seedlings demonstrated that only rye exudates inhibited root growth of wild oats,Avena fatua L., a weed whose root growth is inhibited by Hx. These results suggest that rye could potentially interfere with the growth ofAvena fatua in nature and that this interference could be due to the release of Hx to the soil by way of roots.  相似文献   

20.
Soil fertility replenishment is a critical factor that many farmers in the tropical American hillsides have to cope with to increase food crop production. The effect of three planted fallow systems (Calliandra houstoniana-CAL, Indigofera zollingeriana-IND, Tithonia diversifolia-TTH) and a crop rotation (maize/beans-ROT) on soil nitrogen mineralization, organic matter and phosphorus fractions was compared to the usual practice of allowing natural regeneration of native vegetation or natural fallow management (NAT). Studies were conducted on severely degraded Colombian volcanic-ash soils, 28 months after fallow establishment, at two on-farm experimental sites (BM1 and BM2) in the Cauca Department. Tithonia diversifolia had a significantly higher contribution to exchangeable Ca, K and Mg as well as B and Zn; the order of soil nutrient contribution was TTH > CAL > IND > NAT > ROT. On the other hand, lND had significantly higher soil NO3–N at both experimental farms as compared to all the other fallow system treatments. For the readily available P fraction, CAL and ROT had significantly higher H2O–Po and resin-Pi, respectively, in the 0–5 cm soil layer; whereas TTH showed significantly higher values for both H2O–Po and resin-Pi in the 5–10 cm soil layer. Significant effects were observed on the weights of the soil organic matter fractions which decreased in the order LL (Ludox light) > LM (Ludox intermediate) > LH (Ludox heavy). Indigofera zollingeriana showed greater C, N and P in the soil organic matter fractions than all the other fallow treatments, with NAT having the lowest values. It is concluded that planted fallows can restore soil fertility more rapidly than natural fallows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号