首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
文中提出了晶体生长对温场的要求,分析了温场分布形状对晶体和生长和晶体质量的影响,通过优化温场设计和控制,得到了比较理想且能重复的温场,并在此温场条件下生长出了性能较好的Nd:YAG晶体。  相似文献   

2.
姜腾雨  陈熙基 《激光与红外》1992,22(6):21-25,30
本文介绍了大尺寸Nd:YAG晶体的生长装置及其温场的温度分布和测量方法;通过晶体生长实验,获得了生长大尺寸晶体的合适温场。用<111>方向的YAG籽晶作种子,中频感应加热提拉法已生长出φ60~65×190mm,重3500g的Nd:YAG晶体,文中指出了生长大尺寸Nd:YAG晶体的技术关键及其解决的途径。  相似文献   

3.
分析了导致晶体单程损耗的原因 ,设计了测量晶体单程损耗的装置。初步分析了实验结果 ,并对测试装置提出了改进方案。  相似文献   

4.
本文用Nd∶YAG激光治疗鼻腔血管瘤34例,随诊1-3年,除1例术后半年再次激光治疗外,均无复发。并具有术中出血少,术后不须鼻腔填塞的优点。另外,可免除一些患者行鼻侧或鼻翼切开以切除较大鼻腔血管瘤。既减少了病人痛苦,又可减轻病人经济负担。  相似文献   

5.
报道了一种由激光二极管抽运的Nd∶YAG/Nd∶YVO4共轴双晶体的Cr∶YAG被动调Q激光器,利用这种方式相比于传统的Nd∶YAG/Cr∶YAG激光器提高了输出激光的偏振比,在非线性频率变换过程中得到了更高的转换效率,当抽运功率为10 W时获得了2.8 W的被动调Q 1064 nm激光输出,偏振比大于80∶1,激光重复频率为15 k Hz,脉冲宽度为7 ns,采用LBO作为非线性频率变换晶体,最终获得了223 m W的355 nm紫外激光输出。  相似文献   

6.
报道了倍频Nd∶YAG固体激光器的研究结果,激光器系统由一级板条Nd∶YAG激光振荡器、三级板条放大器和KTP倍频晶体等构成,输出倍频激光能量大于1J,脉冲重复频率1Hz,脉冲宽度6ns~9ns,倍频效率约为48%.  相似文献   

7.
通过液相合成方法提纯Nd∶GdVO4多晶料,降低生长过程中存在的原料非一致性挥发,以及使用特殊晶体生长温控技术和消除晶体"后天性光散射",Czochralski方法成功生长系列不同钕掺杂浓度的Nd∶GdVO4单晶.采用不同透过率的Cr4+∶YAG晶体对Nd∶CdVO4晶体进行激光调Q实验.实验结果显示,Cr4+∶YAG Nd∶GdVO4激光器可以得到稳定高平均功率调制激光输出.实验得到的最小脉冲宽度只有6 ns,对应峰值能量为26.4 kW.对不同浓度掺杂对晶体调制激光性能也进行了比较,发现掺钕浓度越高,激光脉冲能量和峰值功率越大.对该晶体的GaAs调Q激光输出性能也进行了介绍,4.8 W泵浦光下,最大GaAs调制激光输出为0.63 W.  相似文献   

8.
采用真空电子束蒸发镀膜工艺制备纳米厚度的Nd∶YAG薄膜,经1 100 ℃真空高温退火处理使Nd∶YAG薄膜有效结晶,对Nd∶YAG薄膜的表面形貌、晶体结构、光致发光特性进行了测试.  相似文献   

9.
从大功率蓝光激光器的特点入手分析了Nd∶YAG准三能级特性,通过理论上对比三种不同结构激光晶体内的温度场分布,指出复合晶体在降低激光晶体热沉积方面的有效性。并通过采用复合晶体得到473nm激光输出功率为1. 38W,泵浦光- 倍频光的光光转换效率达7. 5% ,证明了复合晶体的优越性。  相似文献   

10.
A diode-pumped doubly Q-switched Nd∶YAG laser operating at 1064nm both with an acoustic-optical(AO)modulator and Cr4+∶YAG saturable absorber in the cavity is demonstrated.At the incident pump power of 11.8W the laser can generate stable 8ns pulse with the peak power of 23.6kW at a 10kHz repetition rate.The pulse temporal profile is more symmetric and shorter compared with that of passively Q-switched lasers with only AO-active and Cr4+∶YAG.A reasonable analysis is developed to explain the experimental resul...  相似文献   

11.
开发出了一套使用 5 32nmNd∶YAG激光器作为激光源 ,用于柴油喷雾浓度及粒径测量的测试系统 ,具有测量环节少 ,精度高 ,可以测量真实柴油喷雾的特点 ;使用该系统 ,获得了柴油撞壁喷雾的浓度及粒径分布图 ,发现了喷雾内部存在拟序结构  相似文献   

12.
为了提高LD抽运脉冲微片激光器的输出性能和系统的集成度,采用龙格-库塔法对包含自发辐射与抽运速率的被动调Q速率方程进行了数值求解,结合被动调Q激光器输出参量的表达式对LD端面抽运的键合Nd∶YAG/Cr4+∶YAG微片激光器输出参量进行了数值仿真。结果表明,利用长度1mm/1.5mm的键合Nd∶YAG/Cr4+∶YAG晶体作为增益介质,当Cr4+∶YAG的初始透过率为75%、输出镜的透过率为30%、抽运光和腔内基模光半径均为100μm时,能够在抽运功率为4.5W的条件下实现平均功率0.7W、脉冲宽度174ps、重复频率16.1kHz的理论激光输出。该研究对被动调Q微片激光器的参量优化和应用具有理论指导意义。  相似文献   

13.
将二极管泵浦单纵模Nd∶YAG 激光器作为主振荡器,三级灯泵Nd∶YAG 放大器及 SBS 相位共轭镜组成双通放大MOPA 系统,经两个放大单元的行波放大,再经过管状放大器放大,实献能量输出10. 59J ,脉宽为4. 76ns ,发散角为6mrad、重复频率10Hz 激光输出。  相似文献   

14.
在平平腔的Cr4 ∶Nd3 ∶YAG激光器中,采用内置f=70mm双凸透镜形成等效腔和用1mm小孔光阑进行横模限制的方法,获得了高重频、高光光转换效率、稳定的激光脉冲序列。在泵浦功率17. 2W时,获得了平均功率4. 7W,其光光转换效率达到了27. 3%。此时的重复频率及其标准方差为42±1kHz,脉宽及其标准方差为9. 57±0. 187ns,示波器采集的光脉冲值幅度及其标准方差为471±36μW。对应的峰值功率和单脉冲能量分别达到了13kW和115μJ。据我们了解,这是迄今为止LD端面泵浦的自调Q激光器获得的重复频率最高且稳定的实验结果。  相似文献   

15.
本文报导用Nd∶YAG激光治疗口咽特发性溃疡24例,口咽及下咽特发性溃疡6例。提出此疗法较药物及其它一些治疗方法比具有治疗简便,疗效好,不易复发等优点。  相似文献   

16.
17.
采用中频感应加热提拉法(Cz)生长晶体,研究了直径φ80 mm Nd:YAG晶体生长的设备条件、温场装置和生长参量,对长晶过程中出现的放肩和转肩阶段晶体开裂原因进行了分析,并采取了相应的改进措施,获得了直径φ80 mm等径长度200mm质量良好的Nd:YAG晶体.  相似文献   

18.
研制了一种大能量紫外光脉冲Nd∶YAG激光器。由漫反射聚光腔、VRM非稳腔、电光 调Q输出高光束质量基频激光;采用Ⅱ类KTP晶体倍频与Ⅱ类LBO 晶体混频,获得紫外 355nm激光输出;单脉冲能量达140mJ,光束发散角1. 5mrad, 1064~355nm光- 光转换效率达22. 2% ,重复频率5Hz,脉宽9. 7ns,光束直径6. 5mm。  相似文献   

19.
实验发现由各向同性晶体构成的Nd∶YAG/Cr∶YAG被动调Q激光器发射时 ,激光束具有明显的偏振特性 ,并且偏振特性强烈地依赖着LD的偏振泵浦方向。该结论在频率转换等实际应用中具有重要的指导意义  相似文献   

20.
通过使用Comsol有限元仿真软件中的热传导模块,对以下四种晶体在端面泵浦工作情况下晶体内部温度分布进行了模拟分析。其中包含:(1)3 mm×3 mm×10 mm均匀掺杂Nd∶YAG晶体;(2)两个端面分别键合3 mm长YAG晶体的3 mm×3 mm×10 mm Nd∶YAG复合晶体;(3)侧面键合厚度1 mm的YAG晶体5 mm×5 mm×10 mm复合Nd∶YAG晶体;(4)四个侧面分别键合厚度1 mm的YAG晶体,两个端面分别键合3 mm长的YAG晶体的5 mm×5 mm×10 mm Nd∶YAG晶体。在泵浦功率为30 W时,四种晶体的最高工作温度分别为153℃,114℃,157℃,115℃。结果表明,与侧面键合结构相比,端面键合是降低激光晶体的工作温度,减小热效应的有效方法。为研究侧面键合结构的适用条件,论文降低了晶体侧面的导热系数,模拟了在同样的泵浦功率条件下四种晶体的最高温度,分别为212.014℃,149.158℃,186.741℃和134.410℃。模拟结果表明在侧面散热条件比较差的条件下,侧面与端面双重键合是降低激光晶体热效应的最佳选择。在实验方面,采用LDA作为泵浦源,在泵浦功率为18 W时,得到侧面与端面双重键合的Nd∶YAG的输出功率最高,为12.1 W,转换效率为67.2%,实验结果与理论模拟结果相符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号