首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study conducted an atmospheric aerosol sampling to measure the PM10 (particles < 10 microns in aerodynamic diameter) and PM2.5 (particles < 2.5 microns in aerodynamic diameter) mass concentrations from October 1996 to June 1997 in northern (Taipei), central (Taichung) and southern (Kaohsiung), the three largest cities of Taiwan. Seventy-eight samples were obtained to measure the mass concentrations of PM10 and PM2.5 from nine sampling sites. According to those results, the PM10 mass concentrations in Taipei, Taichung and Kaohsiung were 42.19, 60.99 and 77.10 micrograms/m3, respectively. The corresponding PM2.5 mass concentrations were 23.09, 39.97 and 48.47 micrograms/m3, respectively. The PM2.5 fraction accounted for 61-67% of the PM10 mass in central and southern Taiwan, but was lower (54-59%) in northern Taiwan. Some samples in which the PM2.5 fraction was overwhelmingly dominant could reach as high as 80-95% of the PM10 mass. In addition, the PM2.5, PM10 levels and PM2.5/PM10-2.5 (particles with aerodynamic diameters ranging from 2.5 to 10 microns) ratios in metropolitan Taiwan significantly fluctuated from site-to-site and over time. Moreover, ambient daily PM2.5 and PM10-2.5 mass concentrations did not correlate well with each other at most of the sampling sites, indicated that they originated from different kinds of sources and emitted variedly over time.  相似文献   

2.
This study has investigated the influence of synoptic weather patterns and long-range transport episodes on the concentration levels of airborne particulate matter (TSP, PM10 and PM2.5) and some major ions (SO(4)(2-), NO(3)(-) and NH(4)(+)) at a background rural station in central Spain. Air mass back-trajectories arriving at the site in 1999-2005 have been analysed by statistical methods. First, cluster analysis was used to group trajectories into 8 clusters depending on their direction and speed. Meteorological scenarios associated to each cluster have been obtained and interpreted. Then, the incidence of different air mass transport patterns on particle concentrations and composition recorded at this station was evaluated. This evaluation included PM10 and PM2.5 concentrations and chemical composition data, obtained at three representative sites of the Madrid air basin during sampling campaigns carried out in the course of the 1999-2005 period. Finally, a residence time analysis of trajectories was also performed to detect remote sources and transport pathways. Significantly elevated concentrations of TSP and PM10 were observed for Northern African flows as a consequence of the transport of mineral dust. Significant inter-cluster differences were also observed for PM2.5 and secondary inorganic compounds, with the highest concentrations associated with low baric gradient situations and Southern European flows. The residence time analysis confirmed that current TSP and PM10 concentrations in central Spain are likely to be influenced significantly by long-range transport of desert dust from different desert regions in North Africa. Furthermore, emissions from continental Europe with a high time of residence in the western and central areas of the Mediterranean basin, seem to significantly influence PM2.5 and secondary inorganic aerosol concentrations in this region.  相似文献   

3.
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, ‘site efficiency,’ was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. ‘Site efficiency’ varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme.  相似文献   

4.
Aerosol is frequently transported by a southward high-pressure system from the Asian Continent to Taiwan and had been recorded a 100% increase in mass level compared to non-event days from 2002 to 2005. During this time period, PM2.5 sulfate was found to increase as high as 155% on event days as compared to non-event days. In this study, Asian emission estimations, Taiwan Emission Database System (TEDS), and meteorological simulation results from the fifth-generation Mesoscale Model (MM5) were used as inputs for the Community Multiscale Air Quality (CMAQ) model to simulate a long-range transport of PM2.5 event in a southward high-pressure system from the Asian Continent to Taiwan. The simulation on aerosol mass level and the associated aerosol components were found within a reasonable accuracy. During the transport process, the percentage of semi-volatile PM2.5 organic carbon in PM2.5 plume only slightly decreased from 22-24% in Shanghai to 21% near Taiwan. However, the percentage of PM2.5 nitrate in PM2.5 decreased from 16-25% to 1%. In contrast, the percentage of PM2.5 sulfate in PM2.5 increased from 16-19% to 35%. It is interesting to note that the percentage of PM2.5 ammonium and PM2.5 elemental carbon in PM2.5 remained nearly constant. Simulation results revealed that transported pollutants dominate the air quality in Taipei when the southward high-pressure system moved to Taiwan. Such condition demonstrates the dynamic chemical transformation of pollutants during the transport process from continental origin over the sea area and to the downwind land.  相似文献   

5.
In this study, the hourly variations of the mass concentrations of PM10, SO2, NO(x) and O3 at three sampling sites were observed in Beijing during dust storm occurrence period in April 2000. The PM2.5 samples were simultaneously collected. By comparing the hourly variations of the pollutant concentrations before, during and after dust storm event and haze pollution episode, the variation characteristics of the mass concentrations of PM10, SO2, NO(x) and O3 during dust storm events were presented. The results show that the mass concentration of PM10 reached 1500 microg m(-3) during dust storm events on April 6 and 25, 2000, which was 5-10 times that of the non-dust weather conditions, and this period of high mass concentration of PM10 lasted for about 14 h, and then the concentration level prior to the dust event was recovered in 6-h time period. Due to the strong wind, the concentrations of SO2, NO(x), NO2 and O3 during dust storm period were maintained at low levels, which was significantly different from those on non-dust storm and haze pollution conditions. A lot of coarse particles as well as a very large amount of fine particles were contained in the atmospheric particulates during dust storm period, and the concentration level of PM2.5 was comparable to that during haze pollution episode. During the dust storm period, the PM2.5 concentration was approximately 230 microg m(-3), accounting for 30% of the total PM10 mass concentration, was four times that of non-dust weather conditions, and the crustal elements constituted about 66.4% of the chemical composition of PM2.5 while sulfate and nitrate contributed much less, which was quite different from the chemical composition of PM2.5 primarily constituted by sulfate, nitrate and organics on haze pollution day.  相似文献   

6.
Both PM2.5 and TSP were monitored in the spring from 2006 to 2008 in an intensive ground monitoring network of five sites (Tazhong, Yulin, Duolun, Beijing, and Shanghai) along the pathway of Asian dust storm across China to investigate the mixing of dust with pollution on the pathway of the long-range transport of Asian dust. Mineral was found to be the most loading component of aerosols both in dust event days and non-dust days. The concentrations of those pollution elements, As, Cd, Pb, Zn, and S in aerosol were much higher than their mean abundances in the crust even in dust event days. The high concentration of SO42− could be from both sources: one from the transformation of the local emitted SO2 and the other from the sulfate that existed in primary dust, which was transported to Yulin. Na+, Ca2+, and Mg2+ were mainly from the crustal source, while NO3 and NH4+ were from the local pollution sources. The mixing of dust with pollution aerosol over Yulin in dust event day was found to be ubiquitous, and the mixing extent could be expressed by the ratio of NO3/Al in dust aerosol. The ratio of Ca/Al was used as a tracer to study the dust source. The comparison of the ratios of Ca/Al together with back trajectory analysis indicated that the sources of the dust aerosol that invaded Yulin could be from the northwestern desert in China and Mongolia Gobi.  相似文献   

7.
PM2.5 chemical composition in Hong Kong: urban and regional variations   总被引:1,自引:0,他引:1  
Chemically speciated PM2.5 measurements were made at roadside, urban, and rural background sites in Hong Kong for 1 year during 2000/2001 to determine the spatial and temporal variations of PM2.5 mass and chemical composition in this highly populated region. Annual average PM2.5 concentrations at the urban and rural sites were 34.1 and 23.7 microg m(-3), respectively, approximately 50-100% higher than the United States' annual average National Ambient Air Quality Standard (NAAQS) of 15 microg m(-3). Daily PM2.5 concentrations exceeded the U.S. 24-h NAAQS of 65 microg m(-3) on 19 days, reaching 131+/-8 microg m(-3) at the roadside site on 02/28/2001. Carbonaceous aerosol is the largest contributor to PM2.5 mass (explaining 52-75% of PM2.5 mass at the two urban sites and 32% at the background site), followed by ammonium sulfate (ranging from 23% to 37% at the two urban sites and 51% at the background site). Ammonium sulfate and crustal concentrations showed more uniform spatial distributions, while the largest urban-rural contrasts found in carbonaceous aerosol (likely due to emissions from on-road gasoline and diesel vehicles). Marine influences accounted for 7% of the mass at the background site (more than twice as much as at the two urban sites). Ternary diagrams are utilized to illustrate the different spatial patterns.  相似文献   

8.
An aerosol light detection and ranging (LIDAR) system was used to measure the depth of the atmospheric mixing layer over Taipei, Taiwan in the spring of 2005. This paper presents the variations of the mixing height and the mixing ratios of air pollutants during an episode of air quality deterioration (March 7-10, 2005), when Taipei was under an anti-cyclonic outflow of a traveling high-pressure system. It was found that, during those days, the urban mixing height reached its daily maximum of 1.0-1.5 km around noon and declined to 0.3-0.5 km around 18:00 (LST). In terms of hourly averages, the mixing height increased with the ambient temperature linearly by a slope of 166 m/degrees C in daytime. The consistency between the changes in the mixing height and in the ambient temperature implied that the mixing layer dynamics were dominated by solar thermal forcing. As the cap of the mixing layer descended substantially in the afternoon, reduced dispersion in the shallow mixing layer caused the concentrations of primary air pollutants to increase sharply. Consequently, the pollutant concentration exhibited an anti-correlation with the mixing height. While attentions are usually focused on the pollution problems occurring in a morning inversion layer, the results of this study indicate that the air pollution and its health impacts could be even more severe as the mixing layer is getting shallow in the afternoon.  相似文献   

9.
Particulate matter (PM) monitoring presents a new challenge to the transboundary air pollution strategies in Europe. Evidence for the role of long-range transport of particulate matter and its significant association with a wide range of adverse health effects has urged for the inclusion of particulate matter within the European Monitoring and Evaluation Programme (EMEP) framework. Here we review available data on PM physico-chemical characteristics within the EMEP framework. In addition we identify future research needs for the characterisation of the background PM in Europe that include detailed harmonised measurements of mass, size and chemical composition (mass closure) of the ambient aerosol.  相似文献   

10.
This study numerically investigates airflow characteristics and particulate matter (PM) transport in multi-room buildings for different natural ventilation patterns with the same air change rate. Four typical natural ventilation patterns (full-open, pass-through, right short-circuit and left short-circuit), representing the ratios of the outlet-to-inlet opening size ranging from 1.67 to 0.17, are considered to study multi-room airflow characteristics. A measured indoor PM10 profile in Taipei Metropolis is input into the above four ventilation patterns as the initial condition of the PM size distribution. The time variation of indoor PM10/PM2.5/PM1 concentrations in each room for various ventilation patterns is next investigated. The effect of ventilation pattern on particle removal mechanism is emphasized. The results show that although the air change rate of the building is the same, airflow characteristics and PM transport behaviors are quite different for various ventilation patterns. The removal efficiencies of PM10 for the four ventilation patterns are all found to be much better than those of PM2.5 and PM1. Particle escape is the major mechanism to remove PM for rooms with double-sided ventilation, whereas particle deposition is important for single-sided ventilation rooms.  相似文献   

11.
The spectral and temporal variations of aerosol optical depths (AOD) observed over Anantapur (a semi-arid region) located in the Southern part of India are investigated by analyzing the data obtained from a Multiwavelength Solar Radiometer (MWR) during January 2005-December 2006 (a total of 404 clear-sky observations) using the Langley technique. In this paper, we highlighted the studies on monthly, seasonal and spectral variations of aerosol optical depth and their implications. The results showed seasonal variation with higher values during pre-monsoon (March-May) and lower in the monsoon (June-November) season at all wavelengths. The pre-monsoon increase is found to be due to the high wind speed producing larger amounts of wind-driven dust particles. The post-monsoon (December-February) AOD values decrease more at higher wavelengths, indicating a general reduction in the number of bigger particles. Also during the post-monsoon, direction of winds in association with high or low pressure weather systems and the air brings more aerosol content to the region which is surrounded by a number of cement plants, lime kilns, slab polishing and brick making units. The quantity of AOD values in pre-monsoon is higher (low during post-monsoon) for wavelength, such as shortwave infrared (SWIR) or near infrared (NIR), which shows that coarse particles contribute more compare with the sub-micron particles. The composite aerosols near the surface follow suit with the share of the accumulation mode to the total mass concentration decreasing from ~ 70% to 30% from post-monsoon to pre-monsoon. Coarse mode particle loading observed to be high during pre-monsoon and accumulation mode particles observed to be high during post-monsoon. The backward trajectories at three representative altitudes with source point at the observing site indicate a possible transport from the outflow regions into Bay of Bengal, southern peninsular India and Arabian Sea. The temporal variations of AOD, Angstrom wavelength exponent and precipitable water content over Anantapur have also been compared with those reported from selected locations in India.  相似文献   

12.
Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0 μm) were collected in Tito Scalo — Southern Italy — from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3 µg m− 3 and 55 µg m− 3 with a mean value of 8 µg m-3, a standard deviation of 7 µg m− 3 and a median value of 6 µg m− 3. As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca > Fe > Al > Na > K > Cr > Mg > Pb > Ni ≈ Ti ≈ Zn > Cd ≈ Cu > Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level.  相似文献   

13.
对上海市某住宅建筑室内外PM10、PM2.5、PM1的浓度进行了测量,研究了最小通风量(外门窗关闭)条件下3种天气时颗粒浓度随时间变化的规律以及相关性,分析了颗粒物浓度与环境温湿度参数之间的关系。研究结果显示,测试期间,室内外空气中细颗粒(PM 2.5)占可吸入颗粒(PM 10)浓度比例分别达65%和87%以上;无明显室内源时,I/O比值小于1且随粒径减小而减小;室内外颗粒浓度相关性与粒径大小有关系,PM1、PM2.5的浓度相关性大于PM10。研究还表明,颗粒物浓度的关联性与天气状况有关系,多云、雨天和阴天时浓度关联性有显著差别;颗粒物的浓度受到室内外温湿度的影响,且受天气状况影响而呈现复杂性。  相似文献   

14.
Many researches have shown that the particulate matter (PM) of air pollution could affect the pulmonary functions, especially for susceptible groups such as asthmatic children, where PM might decrease the lung function to different extents. To assess the effects of PM on health, most studies use data from ambient air monitoring sites to represent personal exposure levels. However, the data gathered from these fixed sites might introduce certain statistical uncertainties. The objectives of this study are to evaluate the effects of various size ranges of PM on peak expiratory flow rate (PEFR) of asthmatic children, and to compare the model performance of using different PM measurements (personal exposures versus fixed-site monitoring) in evaluation. Thirty asthmatic children, aged 6 to 12 years, who live near the fixed monitoring site in Sin-Chung City, Taipei County, Taiwan, were recruited for the study. Personal exposures to PM(1), PM(2.5), and PM(10) were measured continuously using a portable particle monitor (GRIMM Mode 1.108, Germany). In addition, an activity diary and questionnaires were used to investigate possible confounding factors in their home environments. The peak expiratory flow rate of each participant was monitored daily in the morning and in the evening for two weeks. Results showed several trends, although not necessarily statistically significant, between personal PM exposures and PEFR measurements in asthmatic children. In general, notable findings tend to implicate that not only fine particles (PM(2.5)) but also coarse particles (PM(2.5-10)) are likely to contribute to the exacerbation of asthmatic conditions. Stronger lagged effect and cumulative effect of PM on the decrements in morning PEFR were also found in the study. Finally, results of linear mixed-effect model analysis suggested that personal PM data was more suitable for the assessment of change in children's PEFR than ambient monitoring data.  相似文献   

15.
Kundu S  Kavalakatt SS  Pal A  Ghosh SK  Mandal M  Pal T 《Water research》2004,38(17):3780-3790
Hardened paste of Portland cement (HPPC) has been used as a low-cost adsorbent for the removal of arsenic from water environment. Results from the batch experiments, conducted at an initial concentration of 0.2 ppm of arsenate, suggest arsenate removal up to 95%. Kinetic profiles were developed for various conditions. Effects of adsorbent dose, common ions such as Ca(2+), Mg(2+), Fe(3+), Fe(2+), Cl(-), SO(4)(2-), NO(3)(-), PO(4)(3-) and of pH were studied in detail. Adsorption isotherm studies revealed that the Freundlich isotherm was followed with a better correlation than the Langmuir isotherm. Arsenite could also be removed up to approximately 88% using the same material, HPPC. Finally, column studies were undertaken involving the new HPPC to check the suitability of the material for the removal of total arsenic content from water body. Kinetic experiments for the removal of arsenic by column studies revealed a film diffusion mechanism.  相似文献   

16.
Source apportionment of urban fine particle mass (PM(2.5)) was performed from data collected during 1998-1999 in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), using principal component analysis (PCA) and multiple linear regression. Six source categories of PM(2.5) were identified in Amsterdam. They were traffic-related particles (30% of the average PM(2.5)), secondary particles (34%), crustal material (7%), oil combustion (11%), industrial and incineration processes (9%), and sea salt (2%). The unidentified PM(2.5) fraction was 7% on the average. In Erfurt, four source categories were extracted with some difficulties in interpretation of source profiles. They were combustion emissions related to traffic (32%), secondary PM (32%), crustal material (21%) and industrial processes (8%). In Erfurt, 3% of PM(2.5) remained unidentified. Air pollution data and source apportionment results from the two Central European cities were compared to previously published results from Helsinki, where about 80% of average PM(2.5) was attributed to transboundary air pollution and particles from traffic and other regional combustion sources. Our results indicate that secondary particles and local combustion processes (mainly traffic) were the most important source categories in all cities; their impact on the average PM(2.5) was almost equal in Amsterdam and Erfurt whereas, in Helsinki, secondary particles made up for as much as half of the total average PM(2.5).  相似文献   

17.
Recent fluid modeling studies conducted at the EPA Fluid Modeling Facility of flow and diffusion in complex terrain are reviewed. Ratios of the maximum concentration on a hill surface to the maximum concentration in the absence of the hill are estimated. This ratio may be regarded as a terrain amplification factor and is a function of hill aspect ratio (two-versus three-dimensional), hill slope, atmospheric stability, etc. For upwind sources, terrain amplification factors are typically 1 to 2 for neutral flow over two-dimensional hills and 2 to 4 for three-dimensional hills. Terrain amplification factors as large as 10 or 15 were found for low sources placed downwind of two-dimensional hills of moderate to large slope. For strongly stable flow over three-dimensional hills, it is more useful to compare maximum surface concentrations with those at the centerline of the plume in the absence of the hill. These concentrations have been shown to be essentially equal.  相似文献   

18.
Chang TJ  Hsieh YF  Kao HM 《Indoor air》2006,16(2):136-152
This study reports on a numerical investigation of transport behavior of indoor airflow and size-dependent particulate matter (PM) in multi-room buildings. An indoor size-dependent PM transport approach, combining the Eulerian large-eddy simulation of turbulent flow with the Lagrangian particle trajectory tracking, was developed to investigate indoor airflow pattern and PM1/PM2.5/PM10 removal efficiency in naturally ventilated multi-room buildings. A displacement ventilation with a measured indoor PM10 profile in Taipei Metropolis as the initial condition was carried out to characterize spatial and temporal variations of indoor PM1/PM2.5/PM10 removal behavior. The effects of indoor airflow pattern on particle transport mechanisms, e.g., deposition, suspension, migration and escape, were analyzed. Two comparison scenarios, which considered the effects of no indoor partition and different air change rate, respectively, were also conducted. In comparison with the effectiveness of PM1/PM2.5/PM10 removal, the simulated results showed that coarse particles were easier to be removed out of the building than fine particles. Natural ventilation was not an effective way to remove fine particles such as PM1 and PM2.5 in a multi-room building. Indoor partitions can impede 12% of the mean streamwise velocities and significantly increase 30-50% turbulence intensities. However, indoor partitions increased particle deposition and decreased particle escape. As a result of the two opposite particle removal mechanisms, i.e., deposition and escape, the impact of indoor partitions on PM1/PM2.5/PM10 removal behavior was not as significant as the results of airflow velocities. PRACTICAL IMPLICATIONS: This work developed a computational fluid dynamics technique to investigate indoor airflow patterns and PM1/PM2.5/PM10 removal ability in ventilated multi-room buildings. The results of this paper can help to identify adequate PM1/PM2.5/PM10 cleaning procedure and provide useful size-dependent PM control strategy in multi-room buildings.  相似文献   

19.
《Energy and Buildings》2006,38(11):1335-1342
A survey, in the form of a questionnaire, of energy consumption patterns in residential households in the rural fringe of Xian city was undertaken during the winter of 2003/2004. More than 200 households were sampled during the survey. The status of fuel consumption, including the use of biomass fuels for cooking and space heating, was investigated. The types of stoves, purpose of the stove use, and characteristics of the residential houses and residents were also reported and analyzed.The purpose of the survey was to clarify the status of energy consumption and to estimate emissions of greenhouse gases and air pollutants in rural areas of China, from the environmental perspective of climate change and indoor to continental scale air pollution. In rural areas of China, biomass (wood and agricultural waste, such as stalks, corn canes and twigs, branches of wood) is the type of fuel most commonly used. It emits several air pollutants: particulate matter (PM), CO, NMHCs, CH4 and high levels of black carbon (BC) – a greenhouse effect aerosol, and organic carbon (OC) – a cooling effect aerosol. However, CO2 emissions from biomass burning are assumed to be zero because of carbon neutrality.From this survey it would then be possible to analyze the fundamentals of emission reduction potential, for air pollutants and greenhouse gases, from the rural household sector in China.  相似文献   

20.
Special episodes of long-range transported particulate (PM) air pollution were investigated in a one-month field campaign at an urban background site in Helsinki, Finland. A total of nine size-segregated PM samplings of 3- or 4-day duration were made between August 23 and September 23, 2002. During this warm and unusually dry period there were two (labelled P2 and P5) sampling periods when the PM2.5 mass concentration increased remarkably. According to the hourly-measured PM data and backward air mass trajectories, P2 (Aug 23-26) represented a single, 64-h episode of long-range transported aerosol, whereas P5 (Sept 5-9) was a mixture of two 16- and 14-h episodes and usual seasonal air quality. The large chemical data set, based on analyses made by ion chromatography, inductively coupled plasma mass spectrometry, X-ray fluorescence analysis and smoke stain reflectometry, demonstrated that the PM2.5 mass concentrations of biomass signatures (i.e. levoglucosan, oxalate and potassium) and of some other compounds associated with biomass combustion (succinate and malonate) increased remarkably in P2. Crustal elements (Fe, Al, Ca and Si) and unidentified matter, presumably consisting to a large extent of organic material, were also increased in P2. The PM2.5 composition in P5 was different from that in P2, as the inorganic secondary aerosols (NO3-, SO4(2-), NH4+) and many metals reached their highest concentration in this period. The water-soluble fraction of potassium, lead and manganese increased in both P2 and P5. Mass size distributions (0.035-10 microm) showed that a large accumulation mode mainly caused the episodically increased PM2.5 concentrations. An interesting observation was that the episodes had no obvious impact on the Aitken mode. Finally, the strongly increased concentrations of biomass signatures in accumulation mode proved that the episode in P2 was due to long-range transported biomass combustion aerosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号