首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performance modeling of an airborne Raman water-vapor lidar   总被引:2,自引:0,他引:2  
We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a wide range of water-vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable quality to an existing airborne differential absorption water-vapor lidar whereas the nighttime measurements have improved spatial and temporal resolution. In addition, an airborne Raman lidar can offer measurements that are difficult or impossible with the differential absorption lidar technique.  相似文献   

2.
The validation of fascod3 and modtran3 against ground-based and airborne high-resolution Michelson interferometer measurements under clear-sky conditions is presented. Important considerations including water vapor continuum, frequency-dependent sea surface emissivity in the IR window region, and spectral resolution of modtran3 in the comparison of model calculations with high-resolution interferometer measurements are discussed. Our results indicate that it is not adequate to assume sea surface emissivity of 1.0 [?(ν) = 1.0] or a constant in the simulation of upwelling radiance observed by the airborne Michelson interferometer. The use of spectral emissivity (frequency-dependent emissivity) leads to much better agreement between model calculations and interferometer measurements in the IR window region from 750.0 to 1050.0 cm(-1). This could have important implications for the retrieval of sea surface temperature, thin cirrus properties, and aerosol parameters because of the sea surface emissivity of 1.0 assumption commonly used by many researchers. Comparisons of modtran3 calculations with interferometer measurements show that the agreement might not be adequate at the nominal resolution of 2.0 cm(-1), and further spectral degradation might be necessary to improve the agreement between measurements and modtran3 calculations. modtran should be used with caution for relatively high spectral resolution remote-sensing applications.  相似文献   

3.
Bruneau D  Quaglia P  Flamant C  Pelon J 《Applied optics》2001,40(21):3462-3475
The airborne lidar LEANDRE II, described in part I [Appl. Opt. 40, 3450-3461 (2001)], has been flown on the French Atmospheric Research Aircraft to perform lower-troposphere (0-3.5-km) measurements of the water-vapor mixing ratio. We present and discuss the method used for retrieval of the water-vapor mixing ratio and analyze systematic and random measurement errors in relation to instrument design and performance. The results of a series of test flights are presented. With a 0.8-km horizontal resolution and a 300-m vertical resolution, the standard deviation of the measurement error ranges from approximately 0.05 g kg(-1) at 3.5 km to 0.3-0.4 g kg(-1) near the ground, in agreement with the predicted random error. Comparisons with dew-point hygrometer measurements show a vertically averaged difference of ?0.15 g kg(-1), approximately equal to the observed water-vapor variability.  相似文献   

4.
Four inversion schemes based on various retrieval approaches (digital gas correlation, nonlinear least squares, global fit adjustment, and neural networks) developed to retrieve CO from nadir radiances measured by such downward-looking satelliteborne instruments as the Measurement of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Infrared Atmospheric Sounding Interferometer (IASI) instruments were compared both for simulated cases and for atmospheric spectra recorded by the Interferometric Monitor for Greenhouse Gases (IMG). The sensitivity of the retrieved CO total column amount to properties that may affect the inversion accuracy (noise, ancillary temperature profile, and water-vapor content) was investigated. The CO column amounts for the simulated radiance spectra agreed within 4%, whereas larger discrepancies were obtained when atmospheric spectra recorded by the IMG instrument were analyzed. The assumed vertical temperature profile is shown to be a critical parameter for accurate CO retrieval. The instrument's line shape was also identified as a possible cause of disagreement among the result provided by the groups of scientist who are participating in this study.  相似文献   

5.
Li J  Huang HL 《Applied optics》1999,38(6):916-923
It is known that an infrared or a microwave remote-sensing equation is an integral equation of the first kind. As a result, it is ill-posed, the solution is unstable, and difficulties arise in its retrieval. To make the solution stable, either an a priori error covariance matrix or a smoothing factor gamma is necessary as a constraint. However, if the error covariance matrix is not known or if it is estimated incorrectly, the solution will be suboptimal. The smoothing factor gamma depends greatly on the observations, the observation error, the spectral coverage of channels, and the initial state or the first guess of the atmospheric profile. It is difficult to determine this factor properly during the retrieval procedure, so the factor is usually chosen empirically. We have developed a discrepancy principle (DP) to determine the gamma in an objective way. An approach is formulated for achieving an optimal solution for the atmospheric profile together with the gamma from satellite sounder observations. The DP method was applied to actual Geostationary Operational Environment Satellite (GOES-8) sounder data at the Southern Great Plains Cloud and Radiation Testbed site. Results show that the DP method yields a 21.7% improvement for low-level temperature and a 23.9% improvement for total precipitable water (TPW) retrievals compared with the traditional minimum-information method. The DP method is also compared with the Marquardt-Levenberg algorithm used in current operational GOES data processing. Results of the comparison show significant improvement, 6.5% for TPW and 11% for low-level water-vapor retrievals, in results obtained with the DP method compared with the Marquardt-Levenberg approach.  相似文献   

6.
We evaluate the spectral quality, radiometric noise, and retrieval performance of a Fourier transform infrared spectrometer, which has been developed for recording spectrally resolved observations in a region of the spectrum which is important both for the science of Earth's climate and applications, such as the remote sensing of temperature and atmospheric gas species. This spectral region extends from 100 to 1600 cm(-1) and encompasses the two fundamental, rotation and vibration, absorption bands of water vapor. The instrument is a customized version of a Bomem AERI (Atmospheric Emitted Radiance Interferometer) spectrometer, whose spectral coverage has been extended in the far infrared with the use of uncooled pyroelectric detectors. Retrieval examples for water vapor and temperature profiles are shown, which also allow us to intercompare the retrieval performance of both H(2)O vibration and rotation bands.  相似文献   

7.
Liu X  Smith WL  Zhou DK  Larar A 《Applied optics》2006,45(1):201-209
Modern infrared satellite sensors such as the Atmospheric Infrared Sounder (AIRS), the Cross-Track Infrared Sounder (CrIS), the Tropospheric Emission Spectrometer (TES), the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and the Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, superfast radiative transfer models are needed. We present a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the principal component-based radiative transfer model (PCRTM) predicts the principal component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from the properties of PC scores and instrument line-shape functions. The PCRTM is accurate and flexible. Because of its high speed and compressed spectral information format, it has great potential for superfast one-dimensional physical retrieval and for numerical weather prediction large volume radiance data assimilation applications. The model has been successfully developed for the NAST-I and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.  相似文献   

8.
Blom CE  Höpfner M  Weddigen C 《Applied optics》1996,35(15):2649-2652
Atmospheric emission measurements with the cryogenic airborne Michelson Interferometer for Passive Atmospheric Sounding revealed strongly disturbed phase and magnitude spectra. They were corrected with the double-differencing method: The phase information implied in the line structure of atmospheric spectra is used to specify a phase shift with respect to an instrumental phase spectrum, which was determined once from calibration measurements with the differencing method of Revercomb et al. [Appl. Opt. 27, 3210 (1988)].  相似文献   

9.
Dudhia A  Jay VL  Rodgers CD 《Applied optics》2002,41(18):3665-3673
The recent development of satellite instruments that obtain spectrally resolved measurements of the atmosphere has highlighted the problem of how to determine the best subsets, or microwindows, of such spectra for retrievals of temperature and composition. A technique is described that maximizes the information content (or some other figure of merit) based on the modeling of the propagation of systematic as well as random error terms through the retrieval process. Apart from selecting microwindows, this technique can also prioritize existing microwindows for different circumstances and provides a full error analysis of the retrieval. A practical application is demonstrated for the Michelson Interferometer for Passive Atmospheric Sounding limb-viewing interferometer, but the technique is equally applicable to nadir-viewing instruments.  相似文献   

10.
In the fall of 1997 the Atmospheric Radiation Measurement program conducted a study of water-vapor-abundance-measurement at its southern Great Plains site. The large number of instruments included four solar radiometers to measure the columnar water vapor (CWV) by measuring solar transmittance in the 0.94-mum water-vapor absorption band. At first, no attempt was made to standardize our procedures to the same radiative transfer model and its underlying water-vapor spectroscopy. In the second round of comparison we used the same line-by-line code (which includes recently corrected H(2)O spectroscopy) to retrieve CWV from all four solar radiometers, thus decreasing the mean CWV by 8-13%. The remaining spread of 8% is an indication of the other-than-model uncertainties involved in the retrieval.  相似文献   

11.
Zieger P  Ruhtz T  Preusker R  Fischer J 《Applied optics》2007,46(35):8542-8552
We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.  相似文献   

12.
Three independent ocean color sampling methodologies are compared to assess the potential impact of instrumental characteristics and environmental variability on shipboard remote-sensing reflectance observations from the Santa Barbara Channel, California. Results indicate that under typical field conditions, simultaneous determinations of incident irradiance can vary by 9-18%, upwelling radiance just above the sea surface by 8-18%, and remote-sensing reflectance by 12-24%. Variations in radiometric determinations can be attributed to a variety of environmental factors such as Sun angle, cloud cover, wind speed, and viewing geometry; however, wind speed is isolated as the major source of uncertainty. The above-water approach to estimating water-leaving radiance and remote-sensing reflectance is highly influenced by environmental factors. A model of the role of wind on the reflected sky radiance measured by an above-water sensor illustrates that, for clear-sky conditions and wind speeds greater than 5 m/s, determinations of water-leaving radiance at 490 nm are undercorrected by as much as 60%. A data merging procedure is presented to provide sky radiance correction parameters for above-water remote-sensing reflectance estimates. The merging results are consistent with statistical and model findings and highlight the importance of multiple field measurements in developing quality coastal oceanographic data sets for satellite ocean color algorithm development and validation.  相似文献   

13.
The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.  相似文献   

14.
An extension to the two-step physical retrieval algorithm was developed. Combined clear-sky multitemporal and multispectral observations were used to retrieve the atmospheric temperature-humidity profile, land-surface temperature, and surface emissivities in the midwave (3-5 microns) and long-wave (8-14.5 microns) regions. The extended algorithm was tested with both simulated and real data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator. A sensitivity study and error analysis demonstrate that retrieval performance is improved by the extended algorithm. The extended algorithm is relatively insensitive to the uncertainties simulated for the real observations. The extended algorithm was also applied to real MODIS daytime and nighttime observations and showed that it is capable of retrieving medium-scale atmospheric temperature water vapor and retrieving surface temperature emissivity with retrieval accuracy similar to that achieved by the Geostationary Operational Environmental Satellite (GOES) but at a spatial resolution higher than that of GOES.  相似文献   

15.
Aas E  Sørensen K 《Applied optics》1995,34(24):5422-5432
Estimates of the different contributions to the satellite radiance above the outer Oslofjord are presented. The contribution from the sea is of the order of 10% of the total signal, and the part due to reflection from the sea surface constitutes 10-20%. The presence of land may increase the satellite radiance up to 4-9%, but such effects, which are probably reduced to 1/e at a distance of 1 km from the coast, cannot be detected in the present measurements. In situ observations of the marine radiance are corrected for shadings by ship and instrument and for varying solar altitude. The average correction for the self-shading effect of the marine instrument becomes 30-50% in these waters. The linear relations between satellite and sea radiances are determined with correlation coefficients of better than 0.95. The observed minimum value of the satellite radiance (or darkest pixel) is not a satisfactory approximation for the atmospheric correction. It is concluded that, in coastal waters and at the present stage, satellite observations have to be combined with field measurements to obtain reliable results.  相似文献   

16.
Gordon HR 《Applied optics》1995,34(36):8363-8374
A methodology for delineating the influence of finite spectral bandwidths and significant out-of-band response of sensors for remote sensing of ocean color is developed and applied to the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). The basis of the method is the application of the sensor's spectral-response functions to the individual components of the top-of-the-atmosphere (TOA) radiance rather than the TOA radiance itself. For engineering purposes, this approach allows one to assess easily (and quantitatively) the potential of a particular sensor design for meeting the system-sensor plus algorithms-performance requirements. In the case of the SeaWiFS, two significant conclusions are reached. First, it is found that the out-of-band effects on the water-leaving radiance component of the TOA radiance are of the order of a few percent compared with a sensor with narrow spectral response. This implies that verification that the SeaWiFS system-sensor plus algorithms-meets the goal of providing the water-leaving radiance in the blue in clear ocean water to within 5% will require measurements of the water-leaving radiance over the entire visible spectrum as opposed to just narrow-band (10-20-nm) measurements in the blue. Second, it is found that the atmospheric correction of the SeaWiFS can be degraded by the influence of water-vapor absorption in the shoulders of the atmospheric-correction bands in the near infrared. This absorption causes an apparent spectral variation of the aerosol component between these two bands that will be uncharacteristic of the actual aerosol present, leading to an error in correction. This effect is dependent on the water-vapor content of the atmosphere. At typical water-vapor concentrations the error is larger for aerosols with a weak spectral variation in reflectance than for those that display a strong spectral variation. If the water-vapor content is known, a simple procedure is provided to remove the degradation of the atmospheric correction. Uncertainty in the water-vapor content will limit the accuracy of the SeaWiFS correction algorithm.  相似文献   

17.
Methodology is developed for the automated detection of heated plumes of ethanol vapor with airborne passive Fourier transform infrared spectrometry. Positioned in a fixed-wing aircraft in a downward-looking mode, the spectrometer is used to detect ground sources of ethanol vapor from an altitude of 2000-3000 ft. Challenges to the use of this approach for the routine detection of chemical plumes include (1) the presence of a constantly changing background radiance as the aircraft flies, (2) the cost and complexity of collecting the data needed to train the classification algorithms used in implementing the plume detection, and (3) the need for rapid interferogram scans to minimize the ground area viewed per scan. To address these challenges, this work couples a novel ground-based data collection and training protocol with the use of signal processing and pattern recognition methods based on short sections of the interferogram data collected by the spectrometer. In the data collection, heated plumes of ethanol vapor are released from a portable emission stack and viewed by the spectrometer from ground level against a synthetic background designed to simulate a terrestrial radiance source. Classifiers trained with these data are subsequently tested with airborne data collected over a period of 2.5 years. Two classifier architectures are compared in this work: support vector machines (SVM) and piecewise linear discriminant analysis (PLDA). When applied to the airborne test data, the SVM classifiers perform best, failing to detect ethanol in only 8% of the cases in which it is present. False detections occur at a rate of less than 0.5%. The classifier performs well in spite of differences between the backgrounds associated with the ground-based and airborne data collections and the instrumental drift arising from the long time span of the data collection. Further improvements in classification performance are judged to require increased sophistication in the ground-based data collection in order to provide a better match to the infrared backgrounds observed from the air.  相似文献   

18.
A previously published radiance model inversion theory has been field tested by using airborne water-leaving radiances to retrieve the chromophoric dissolved organic matter (CDOM) and detritus absorption coefficient, the phytoplankton absorption coefficient, and the total backscattering coefficient. The radiance model inversion theory was tested for potential satellite use by comparing two of the retrieved inherent optical properties with concurrent airborne laser-derived truth data. It was found that (1) matrix inversion of water-leaving radiances is well conditioned even in the presence of instrument-induced noise, (2) retrieved CDOM and detritus and phytoplankton absorption coefficients are both in reasonable agreement with absorption coefficients derived from airborne laser-induced fluorescence spectral emissions, (3) the total backscattering retrieval magnitude and variability are consistent with expected values for the Middle Atlantic Bight, and (4) the algorithm performs reasonably well in Sargasso Sea, Gulf Stream, slope, and shelf waters but is less consistent in coastal waters.  相似文献   

19.
The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed shipboard fluorescence-to-absorption algorithms to retrieve CDOM absorption; and (4) the retrieval is not significantly affected by long-path multiple scattering, differences in attenuation at the excitation and emission wavelengths, or measurement in the 180° backscatter configuration. Airborne CDOM absorption measurements will find immediate application to (a) forward and inverse modeling of oceanic water-leaving radiance and (b) validation of satellite-retrieved products such as CDOM absorption.  相似文献   

20.
We present a new retrieval model designed to analyze the observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is on board the ENVironmental SATellite (ENVISAT). The new geo-fit multitarget retrieval model (GMTR) implements the geo-fit two-dimensional inversion for the simultaneous retrieval of several targets including a set of atmospheric constituents that are not considered by the ground processor of the MIPAS experiment. We describe the innovative solutions adopted in the inversion algorithm and the main functionalities of the corresponding computer code. The performance of GMTR is compared with that of the MIPAS ground processor in terms of accuracy of the retrieval products. Furthermore, we show the capability of GMTR to resolve the horizontal structures of the atmosphere. The new retrieval model is implemented in an optimized computer code that is distributed by the European Space Agency as "open source" in a package that includes a full set of auxiliary data for the retrieval of 28 atmospheric targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号