首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The extracellular signal-regulated kinase (ERK), the c-Jun NH2-terminal kinase (JNK), and p38 MAP kinase pathways are triggered upon ligation of the antigen-specific T cell receptor (TCR). During the development of T cells in the thymus, the ERK pathway is required for differentiation of CD4(-)CD8(-) into CD4(+)CD8(+) double positive (DP) thymocytes, positive selection of DP cells, and their maturation into CD4(+) cells. However, the ERK pathway is not required for negative selection. Here, we show that JNK is activated in DP thymocytes in vivo in response to signals that initiate negative selection. The activation of JNK in these cells appears to be mediated by the MAP kinase kinase MKK7 since high levels of MKK7 and low levels of Sek-1/MKK4 gene expression were detected in thymocytes. Using dominant negative JNK transgenic mice, we show that inhibition of the JNK pathway reduces the in vivo deletion of DP thymocytes. In addition, the increased resistance of DP thymocytes to cell death in these mice produces an accelerated reconstitution of normal thymic populations upon in vivo DP elimination. Together, these data indicate that the JNK pathway contributes to the deletion of DP thymocytes by apoptosis in response to TCR-derived and other thymic environment- mediated signals.  相似文献   

8.
In Na(+)- and K(+)-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardiac glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+,K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K(+)-free medium the Na+,K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na(+)-efflux mode is excluded.  相似文献   

9.
The Na-K-ATPase beta 1 subunit acts as the beta subunit for the HK alpha 2 protein in the rat kidney. The colonic H(+)-K(+)-ATPase is a member of the P-type ATPases, and has been shown to contribute to potassium transport by the mammalian kidney and colon. The P-type ATPases often consist of an alpha subunit that contains the catalytic site and a beta subunit that participates in regulation of enzyme activity and targeting of the enzyme to the plasma membrane. The cDNA of the alpha subunit (HK alpha 2) has been cloned and the HK alpha 2 protein has been isolated from the rat kidney and colon. However, a unique beta subunit for the colonic H(+)-K(+)-ATPase has not been described. To determine if one of the known beta subunits present in the kidney might act as the beta subunit for the colonic H(+)-K(+)-ATPase, microsomes enriched in the colonic H(+)-K(+)-ATPase were isolated using an HK alpha 2-specific antibody (AS 31.7) and the Minimac magnetic separation system. Immunoblots of rat kidney microsomal protein isolated with antibody AS 31.7 were probed with antibodies directed against the gastric HK beta subunit, Na(+)-K(+)-ATPase alpha 1, and Na(+)-K(+)-ATPase beta 1 subunits. A band of the appropriate size was detected with Na(+)-K(+)-ATPase beta 1-specific antibodies, but not those directed against HK beta 1. These data suggest that Na(+)-K(+)-ATPase beta 1 could be the beta subunit for the colonic H(+)-K(+)-ATPase in the kidney.  相似文献   

10.
Graft-versus-host disease (GVHD) remains the principal complication limiting the wider application of allogeneic bone marrow transplantation (BMT). Advances in basic immunology during the last decade have demonstrated how interactions between immunologically competent cells are governed by cytokines, and much recent research has focused on the roles of these mediators in the pathogenesis of acute GVHD. This article reviews current evidence that dysregulated cytokine production can be considered a cascade of sequential monocyte and T-cell activation that is responsible for many of the manifestations of acute GVHD. We suggest that cytokine dysregulation can be conceptualized in three phases. Phase 1 is initiated by the conditioning of the host, which induces inflammatory processes in recipient tissues. Donor T-cell activation by host alloantigens and subsequent cytokine secretion in phase 2 is facilitated by the consequences of phase 1. The T-cell-derived cytokines of phase 2 activate distal inflammatory mediators, which, in synergy with T- and NK-cell-mediated cytotoxicity, produce the systemic morbidity of GVHD-associated immunosuppression in phase 3. Data from both experimental and clinical studies involving cytokines and their blockade in the prevention or treatment of GVHD are reviewed.  相似文献   

11.
A fraction from normal human plasma inhibiting Na(+)-K(+)-ATPase has been recently identified as lysophosphatidylcholine (LPC). The aim of this study was to investigate the existence of a relationship between the activity of the cellular membrane Na(+)-K(+)-ATPase and plasma LPC in human diabetes. We studied 10 patients with insulin-dependent-diabetes mellitus (IDDM), 14 patients with non-insulin-dependent diabetes mellitus (NIDDM), and 10 sex- and age-matched control subjects. Plasma LPC concentrations were increased in both IDDM and NIDDM patients compared with control subjects. Na(+)-K(+)-ATPase activity was reduced in both groups of patients in erythrocyte and platelet membranes. There was a significant correlation between the concentrations of plasma LPC and Na(+)-K(+)-ATPase activity in both erythrocyte and platelet membranes (P < 0.01). To investigate the effect of LPC on the enzyme, Na(+)-K(+)-ATPase activity was determined in erythrocyte membranes obtained from six healthy subjects after in vitro incubation with increasing concentrations of LPC (1-10 microM). Enzymatic activity was significantly reduced by in vitro LPC at a concentration of 2.5 microM, with a further decrease at 5 microM. These data suggest that the decrease in Na(+)-K(+)-ATPase activity in diabetes might be due to increased LPC concentrations.  相似文献   

12.
13.
The relative contributions of Na(+)-K(+)-ATPase pumps and Na(+)-K(+)-Cl- cotransport to total rubidium (Rb+) influx into primary cultures of renal tubule cells (PC.RC) and cells transformed either with the wild-type or a temperature-sensitive mutant of the simian virus 40 (SV40), were measured under various growth conditions. The Na(+)-K(+)-ATPase-mediated component represented 74% and 44-48% of total Rb+ influx into PC.RC and SV40-transformed cells, respectively. Proliferating transformed cells showed substantial ouabain-resistant bumetanide-sensitive (Or-Bs) Rb+ influx (41-45% of total) which indicated the presence of a Na(+)-K(+)-Cl- cotransport. The Or-Bs component of Rb+ influx was greatly reduced when temperature-sensitive transformed renal cells (RC.SVtsA58) grown in Petri dishes or on permeable filters were shifted from the permissive (33 degrees C) to the restrictive temperature (39.5 degrees C) to arrest cell growth. The ouabain-sensitive Rb+ influx mediated by the Na(+)-K(+)-ATPase, the total and amiloride-sensitive Na+ uptakes were not modified following inhibition of cell proliferation. A similar fall in the Or-Bs influx was obtained when renal tubule cells transformed by the wild-type SV40 (RC.SV) were incubated with the K+ channel blocker, tetraethylammonium (TEA) ion, which we had previously shown to arrest cell growth without affecting cell viability (Teulon et al.: J. Cell. Physiol., 151:113-125, 1992). Reinitiation of cell growth by removal of TEA or return to 33 degrees C of the temperature-sensitive cells restored the Or-Bs component of Rb influx. Taken together, these results indicate that the Na(+)-K(+)-Cl- cotransport activity is critically dependent on cell growth conditions.  相似文献   

14.
15.
16.
The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated.  相似文献   

17.
18.
19.
Interactions of L-triiodothyronine (T3) in adult rat cerebrocortical synaptosomes were studied in vitro. Scatchard plot analysis revealed two sets of T3 binding sites. The degree of saturation of T3 binding sites (putative receptor) correlated well with the dose-dependent inhibition of Na(+)-K(+)-ATPase activity in synaptosomes. The relative binding affinities and relative inhibition of enzyme activities for different TH analogues were L-T3 > T3-amine > TRIAC = L-T4 > r-T3 > T2 and L-T3 > T3-amine > TRIAC > L-T4 > r-T3 > T2, respectively. The present study demonstrates the nature of inhibition of synaptosomal Na(+)-K(+)-ATPase activity may be as a function of T3 occupancy of synaptosomal receptor sites in adult mammalian brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号