共查询到20条相似文献,搜索用时 46 毫秒
1.
针对高功率1060 nm半导体激光器的外延结构,分析了影响器件功率进一步提高的原因.根据分析,优化了激光器的量子阱结构和波导结构,并理论模拟了波导宽度对模式和输出功率的影响.根据不同模式的光场分布,对量子阱有源区的位置进行了优化,并设计了非对称、宽波导结构.对不同模式的限制因子进行了计算,结果表明,优化后的非对称波导结构能够在降低基模的限制因子的同时,增加高阶模式的损耗. 相似文献
2.
nm半导体激光器在高能激光系统种子源、空间激光雷达等领域具有广泛的应用,受限于砷化镓体系InGaAs量子阱材料大应力,在1060nm波段激光器外延生长缺陷密度较高,且由于目前该波段激光器结构设计普遍采用窄波导结构,腔内损耗和非辐射复合水平较高,激光器斜率效率较低,高温特性较差。传统InGaAs压应变量子阱势垒高度较低加剧了激光器的高温特性劣化。文章通过优化激光器外延生长条件并采用应变补偿量子阱结构和厚N包层结构,精确控制材料应力和势垒高度,降低腔内损耗,减小远场发散角,研制出了一种高性能1060nm单模半导体激光器,斜率效率在85℃时依然超过0.9W/A。此外,通过引入分布式反馈激光器悬浮掩埋光栅结构实现了激光器波长锁定,斜率效率超过0.7W/A。 相似文献
3.
设计了980nm非对称宽波导InGaAs/InGaAsP量子阱激光器,并在结构中插入电流阻挡层,有效地阻止载流子的泄露。用LASTIP软件对980nm非对称宽波导量子阱激光器进行理论模拟,与传统的980nm对称宽波导量子阱激光器相比,非对称宽波导量子阱激光器波导和量子阱之间有更小的能带差,非对称宽波导结构具有更低的阈值电流,更高的斜效率以及更低的阻抗,所以带有电流阻挡层的980nm非对称宽波导InGaAs/InGaAsP量子阱激光器有更高的光电转换效率和输出功率。 相似文献
4.
5.
为获得高效率半导体激光器,理论分析并计算了p型波导层四种不同掺杂浓度分布对器件内损耗、串联电阻、阈值电流以及电光转换效率的影响,由此优化了p型波导层的掺杂浓度分布和厚度。根据计算及优化结果,p型波导层采取线性s杂分布,厚度为0.45μm,制备了腔长1200μm的980nm半导体激光器,其阈值电流为324mA,内损耗为1.62cm-1,串联电阻为136mΩ。当输入电流为1.98A时,激光器的斜率效率和输出光功率分别为1.05W/A和1.74W,对应的电光转换效率从未优化时的54.6%提高到58.4%。 相似文献
6.
808 nm大功率无铝有源区非对称波导结构激光器 总被引:2,自引:2,他引:2
采用分别限制非对称波导结构,将光场从对称分布变为非对称分布,降低了载流子光吸收损耗,并允许p型区具有更高的掺杂水平,从而使器件电阻降低.对GaAsP/GaInP张应变单量子阱(SQW)非对称波导结构激光器的光场特性进行了理论分析,设计了波导层厚度,并制作了波长为808 nm的无铝有源区大功率半导体激光器.器件综合特性测试结果为:腔长900μm器件的阈值电流密度典型值为400 A/cm2,内损耗低至1.0 cm-1;连续工作条件下,150μm条宽器件输出功率达到6 W,最大斜率效率为1.25 W/A.器件激射波长为807.5 nm,平行和垂直结的发散角分别为3.0°和34.8°.20~70℃范围内特征温度达到133 K.结果表明,分别限制非对称波导结构是降低内损耗,提高大功率半导体激光器特性的有效措施. 相似文献
7.
为了提高半导体激光器(LD)的出光功率,优化了P型波导层以及限制层的厚度。将光场的对称分布变成非对称分布,降低了有源区的光限制因子,从而降低了器件腔面的功率密度,避免器件出现腔面灾变损伤(COD);提高LD的电光转换效率,减小器件的散热路径,降低器件的热阻,从而有效抑制了器件的热饱和。设计并制作了非对称宽波导980 nm高功率LD。器件的综合测试性能为:当器件的注入电流为161 A时,器件的输出功率达到139.6 W,对应的斜率效率、电压和电光转换效率分别为0.91 W/A、1.79 V和48.4%。 相似文献
8.
友清 《激光与光电子学进展》1998,35(12):22-24
自60年代后期首次演示接染料凝胶和分子晶体的激光作用以来,固体有机材料光泵所产生的受激发射已变得众所周知。对该领域的兴趣也因聚合物有机薄膜和轻分子量有机薄膜的高效、长寿命和很强电致发光的演示而复苏,此种现象象征着这些材料具有产生激光作用的可能性。最近对光泵聚合物几个研究的报导意味着有激光发射的现象。这里介绍圆盘波导和双异质结构中光泵真空淀积有机分子薄膜时产生激光作用的明显证据。在有机导电薄膜中实现激光作用将开辟发展新一类电泵浦激光二极管的道路。根据如下五个现象可对激光发射(与放大自发辐射不同,这里… 相似文献
9.
提出了一种高电光转换效率的新型复合波导半导体激光器结构(Composite Waveguide LD,CWG LD)。该器件结构高的电光转换效率得益于其所采用的Al组分阶梯分布AlxGa1-xAs波导层。通过优化设计波导层电阻率分布及能带分布,CWG LD结构在保证输出光功率的同时,可以有效地降低器件串联电阻并提高电光转换效率。结合理论分析及计算机数值仿真软件,分析了复合波导提升器件电光转换效率的机理。经优化,在激光器条宽为6 m、腔长为1 000 m的情况下,波导层阶梯数为1时CWG LD结构可以获得最大的电光转换效率。研究结果表明:在注入电流为900 mA时,CWG LD结构的串联电阻由常规波导器件结构的3.51 降低为2.67 ,电光转换效率由54.7%提升至69.5%。 相似文献
10.
11.
The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device, the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length:the threshold current density is 132.5 A/cm2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved. 相似文献
12.
13.
利用普通的液相外延和微加工技术成功地制备了InGaAsP单量子陆微盘激光器,并从实验上观测到远低于普遍激光器阈值条件下的单模振荡,证实了微盘激光器中微盘很强的模式选择作用,反映了微盘的微腔特征。 相似文献
14.
本文对有源区条宽100μm的GaAsP/AlGaAs 808nm量子阱激光器分别限制结构进行了理论分析和设计.选取了三种情况的波导层和限制层的铝组分,分别计算和分析了波导层厚度与激光器光限制因子、最大出光功率、垂直发散角和阈值电流密度的函数关系.根据计算结果可知:当波导层和限制层铝组分为0.4和0.5时,采用窄波导结构可以获得器件的最大输出功率为11.2W,发散角为19°,阈值电流密度为266A/cm2;采用宽波导结构可以得到器件的最大输出功率为9.4W,发散角为32°,阈值电流密度为239A/cm2. 相似文献
15.
本文对有源区条宽100μm的GaAsP/AlGaAs 808nm量子阱激光器分别限制结构进行了理论分析和设计.选取了三种情况的波导层和限制层的铝组分,分别计算和分析了波导层厚度与激光器光限制因子、最大出光功率、垂直发散角和阈值电流密度的函数关系.根据计算结果可知:当波导层和限制层铝组分为0.4和0.5时,采用窄波导结构可以获得器件的最大输出功率为11.2W,发散角为19°,阈值电流密度为266A/cm2;采用宽波导结构可以得到器件的最大输出功率为9.4W,发散角为32°,阈值电流密度为239A/cm2. 相似文献
16.
研制了低阈值电流、高量子效率670nm压缩应变单量子阱GaInP/AIGalnP脊形波导激光器。测量解理成的激光器条,腔长为300μm时,阈值电流为12.8mA,双面外部量子效率之和达到94.6%。 相似文献
17.
18.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs. 相似文献
19.
介绍了一种能够全面表征半导体二极管器件的电学特性的方法,此方法结合半导体二极管的正向交流特性和直流特性,称之为正向交流小信号法。利用该方法深入地研究和对比分析了GaN基和GaAs基半导体激光器的电学特性,包括表观电容、串联电阻和理想因子。实验结果表明,对于GaN基和GaAs基半导体激光器,其开始发光的过程同步于其电容由正转变为负的过程。进一步实验结果表明,GaN基半导体激光器比GaAs基半导体激光器具有更大的串联电阻和更大的理想因子。这是由于GaN基激光器的器件工艺不够完善以及外延生长的GaN材料具有很大的位错密度。该研究为提高和改善GaN基激光器的性能提供了必要的依据以及理论指导。 相似文献