首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
位错可以通过缩短少数载流子寿命而严重限制多晶硅太阳电池的转换效率,随着对高转换效率的追求,研究多晶硅位错的重要性也随之增加.在介绍现有半导体晶体CRSS和HAS位错模型的基础上,归纳了定向凝固法生长多晶硅中应力、晶界、杂质、过冷度对位错形成的影响机制与缺陷腐蚀和原位检测等多种位错表征方法.重点阐述了控制固液界面形貌、籽晶、掺杂、硅锭制备工艺、硅片退火等技术对减少与抑制多晶硅位错的影响.最后,针对位错模型、位错表征以及多晶硅生长过程中位错的抑制和生长后位错密度降低技术进行了展望.  相似文献   

2.
物理冶金多晶硅太阳电池叠层钝化减反射结构模拟   总被引:2,自引:0,他引:2  
采用PC1D模拟软件对p型物理冶金多晶硅太阳电池的SiO2/Si Nx/SiNx叠层钝化减反射结构进行了计算模拟。结果表明:在SiNx/Si Nx双层减反射结构中引入SiO2钝化层后可以明显改善电池的外量子效率与表面减反射效果,并最终提高电池转换效率;随着SiO2膜厚度的增加,电池表面反射率呈先降低后增加的趋势,而电池外量子效率及转换效率则呈现出相反的趋势。二氧化硅膜厚度在2~8 nm时,电池转换效率变化不大,并在6 nm时效率达到最大值18.04%,当二氧化硅膜厚度大于8 nm后电池转换效率会出现明显下降。  相似文献   

3.
PERC结构多晶硅太阳电池的研究   总被引:1,自引:0,他引:1  
高效、低成本是目前硅太阳电池追求的主要目标。多晶硅太阳电池成本低,但其电性能较差。背面钝化及局部背接触是提高多晶硅太阳电池电性能的主要技术。通过采用SiO2/SiNx叠层膜作为背钝化介质层,依次经过背面开槽、丝网印刷、烧结形成背面局部接触,制备钝化发射极和背表面电池(PERC)结构多晶硅太阳电池。采用恒光源I-V特性测试系统测试其电性能,结果表明:较之常规铝背场多晶硅太阳电池,PERC结构电池在开路电压Voc、短路电流密度Jsc、转换效率η方面分别提高了13 mV、1.8 mA/cm2和0.67%(绝对值),其转换效率达到17.27%。PERC结构多晶硅电池采用了常规丝网印刷工艺,有利于实现高效多晶硅电池的产业化生产,具有很高的实际意义。  相似文献   

4.
采用酸溶液腐蚀法研究多晶硅电池绒面性质,改变腐蚀液中HF、HNO_3和去离子水比例和反应时间,通过扫描电镜、反射谱仪、太阳能电池测试系统等手段研究腐蚀液的改变对电池性能的影响。结果表明:HF(40%):HNO_3(65%):H_2O体积比为3:1∶2时其反应速率最高,刻蚀30s时多晶硅刻蚀效果最优,电池光电转换效率最大为18.24%。并对实际生产中药液的使用寿命进行探究,结果表明:生产156mm×156mm多晶硅片,酸腐蚀液刻蚀43万片时多晶硅电池效率最高,超过45万片需要维护或重新配置药液,才能保证电池性能不受影响。  相似文献   

5.
Mary 《今日电子》2012,(12):27
近日,中科院微电子所微电子设备研究室(八室)夏洋研究员带领科研团队联合嘉兴微电子仪器与设备工程中心在多晶黑硅太阳能电池研究上再次获得突破,电池转换效率达到17.88%,在多晶硅太阳能电池研究领域中处于先进水平。夏洋研究团队原创性提出利用等  相似文献   

6.
张妹玉  张宁  翁铭华  陈朝 《半导体光电》2014,35(2):233-236,240
通过沉积SiNx薄膜和H2退火表面处理工艺对低成本多晶硅太阳电池进行了处理,对表面处理前后的电池效率进行了对比测试,详细地研究了这两种表面处理工艺对电池的短路电流、开路电压、填充因子和转换效率的影响。实验发现,沉积了SiNx薄膜的低成本多晶硅太阳电池的效率在原有基础上提高了1.8%左右;而经过H2退火后的电池效率则出现了效率衰减。与此同时,对成本相对高的太阳能级多晶硅电池也进行了H2退火,与低成本多晶硅电池相比,其效率增加明显,与低成本太阳电池呈现了相反的现象。最后分析了两种表面处理工艺对电池性能造成影响的原因。  相似文献   

7.
电源技术     
Y2000-62067-1 0009161硅太阳能电池新进展=Recent progress in Silicon solarcells[会,英]/Green,M.A.& Zhao,J.//1998 IEEEInternational Conference on Optoelectronic and Micro-electronic Materials and Devices.—1~6(EC)本文介绍了硅太阳能电池两种独立的光电效率结果,一单独硅电池效率为24.5%,对多晶硅电池来说,效率为19.8%。参13  相似文献   

8.
《中国集成电路》2010,19(4):6-6
中国台湾地区友达光电(AUO)在“PV EXPO2010第三届国际太阳能电池展”上展出了2009年底已经开始量产的转换效率为13.2%的多晶硅太阳能电池模块,最大输出功率为220W。此外,该公司还正在开发转换效率为14.66%的多晶硅太阳能电池模块和转换效率为14.7~15.05%的单晶硅太阳能电池模块。  相似文献   

9.
在工业产线上制备了PERC结构的多晶硅太阳电池,并研究了在电池背表面引入PERC背钝化结构对其光电转换性能的影响。结果表明:PERC背钝化结构能够提升电池的短路电流和开路电压,光电转换效率超过了20%。结合光学仿真及分析电池的关键光电参数知,其光电转换性能改善的原因可归结为PERC背钝化结构降低了长波太阳光子在背铝电极的寄生吸収损失和光生载流子的背表面复合损失。PERC背钝化结构能够提升多晶硅太阳电池的光电转换效率,并且其制备工艺与传统产线兼容,是一种优选的产业电池结构。  相似文献   

10.
我们利用透射X射线形貌技术观察了 n-GaAs衬底及 GaAs-Al_xGa_(1-x)AsDH外延片中的晶体缺陷,并且用高分辨率形貌技术与金相技术进行了对照.证明了普通X射线形貌像中的衬度是由晶体缺陷形成的.根据X射线形貌像,我们对n-GaAs衬底及GaAs-AlxGa_(1-x)As DH外延片中的缺陷密度作出了评价. 采用常规的DH液相外延技术及质子轰击条形的器件工艺,将我们研究的衬底制成了激光器.测试结果表明:器件的成品率和质量与我们对衬底中缺陷密度的评价完全对应.利用X射线形貌技术挑选出的低缺陷密度的衬底,我们获得了很多性能优良的长寿命激光器.  相似文献   

11.
《Microelectronics Journal》2002,33(8):671-674
Minority carrier trapping centers frequently exist in solar grade multicrystalline silicon, such trapping centers cause a drastic increase in photoconductance at carrier injection levels equal to and below the trap density, this phenomenon leads to higher open circuit voltage for multicrystalline silicon solar cells at illumination levels below about 0.2 suns compared to high performance crystalline silicon solar cells. In this paper, the open circuit voltage of multicrystalline silicon solar cells are investigated at low illumination levels, the experiments prove that some multicrystalline silicon solar cells which have higher trap density have higher open circuit voltage at weak illumination levels, and have lower efficiency, so a new method is presented to analyze quality of multicrystalline silicon by measuring open circuit voltage at weak illumination levels in-line, this makes cells manufacturers gain insight into the quality of multicrystalline silicon wafer from different multicrystalline silicon manufacturers easily with the same cell process before screenprinting and firing.  相似文献   

12.
Measurements of the dislocation density are compared with locally resolved measurements of carrier lifetime for p‐type multicrystalline silicon. A correlation between dislocation density and carrier recombination was found: high carrier lifetimes (>100 µs) were only measured in areas with low dislocation density (<105 cm−2), in areas of high dislocation density (>106 cm−2) relatively low lifetimes (<20 µs) were observed. In order to remove mobile impurities from the silicon, a phosphorus diffusion gettering process was applied. An increase of the carrier lifetime by about a factor of three was observed in lowly dislocated regions whereas in highly dislocated areas no gettering efficiency was observed. To test the effectiveness of the gettering in a solar cell manufacturing process, five different multicrystalline silicon materials from four manufacturers were phosphorus gettered. Base resistivity varied between 0·5 and 5 Ω cm for the boron‐ and gallium‐doped p‐type wafers which were used in this study. The high‐efficiency solar cell structure, which has led to the highest conversion efficiencies of multicrystalline silicon solar cells to date, was used to fabricate numerous solar cells with aperture areas of 1 and 4 cm2. Efficiencies in the 20% range were achieved for all materials with an average value of 18%. Best efficiencies for 1 cm2 (20·3%) and 4 cm2 (19·8%) cells were achieved on 0·6 and 1·5 Ω cm, respectively. This proves that multicrystalline silicon of very different material specification can yield very high efficiencies if an appropriate cell process is applied. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper reports a substantially improved efficiency for a multicrystalline silicon solar cell of 19.8%. This is the highest ever reported efficiency for a multicrystalline silicon cell. The improved multicrystalline cell performance results from enshrouding cell surfaces in thermally grown oxide to reduce their detrimental electronic activity and from isotropic etching to form a hexagonally-symmetric “honeycomb” surface texture. This texture, largely of inverted hemispheres, reduces reflection loss and improves absorption of infrared light by effectively acting as a randomizer. Results of a ray tracing model are presented, with the notable finding that up to 90% of infrared light is trapped in the substrate after the first two passes, compared with only 65% for the well known inverted pyramid structure. These optical features are considered to contribute to an exceptionally high short-circuit current density of 38.1 mA/cm2. A further improvement is expected by using under-etched wells for these honeycomb cells  相似文献   

14.
Quasi‐monocrystalline silicon wafers have appeared as a critical innovation in the PV industry, joining the most favorable characteristics of the conventional substrates: the higher solar cell efficiencies of monocrystalline Czochralski‐Si (Cz‐Si) wafers and the lower cost and the full square‐shape of the multicrystalline ones. However, the quasi‐monocrystalline ingot growth can lead to a different defect structure than the typical Cz‐Si process. Thus, the properties of the brand new quasi‐monocrystalline wafers, based on low and high crystal defect densities, have been for the first time studied from a mechanical point of view, comparing their strength with that of both Cz‐Si monocrystalline and typical multicrystalline materials. The study has been carried out employing the four line bending test and simulating them by means of FE models. For the analysis, failure stresses were fitted to a three‐parameter Weibull distribution. High mechanical strength was found in all the cases. However, the quasi‐monocrystalline wafers characterized by large density of bulk defects, due to the noticeable density of extended defects, showed lower fracture tensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The latest results on the use of porous silicon (PS) as an antireflection coating (ARC) in simplified processing for multicrystalline silicon solar cells are presented. The optimization of a PS selective emitter formation results in a 14.1% efficiency multicrystalline (5×5 cm2) Si cell with evaporated contacts processed without texturization, surface passivation, or additional ARC deposition. Specific attention is given to the implementation of a PS ARC into an industrially compatible screen-printed solar cell process. Both the chemical and electrochemical PS ARC formation method are used in different solar cell processes, as well as on different multicrystalline silicon materials. Efficiencies between 12.1 and 13.2% are achieved on large-area (up to 164 cm2 ) commercial Si solar cells  相似文献   

16.
The era of the seed‐cast grown monocrystalline‐based silicon ingots is coming. Mono‐like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski‐Si (Cz‐Si) wafers and the lower cost, high productivity and full square‐shape that characterize the well‐known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A planar converter containing quantum dots as wavelength-shifting moieties on top of a solar cell was studied. The highly efficient quantum dots are to shift the wavelengths where the spectral response of the solar cell is low to wavelengths where the spectral response is high in order to improve the conversion efficiency of the solar cell. It was calculated that quantum dots with an emission at 603 nm increase the multicrystalline solar cell short-circuit current by nearly 10%. Simulation results for planar converters on hydrogenated amorphous silicon solar cells show no beneficial effects, due to the high spectral response at low wavelength.  相似文献   

18.
Solar cell efficiencies as high as 18.6%(1 cm2 area) have been achieved by a process which involves impurity gettering and effective back surface recombination velocity reduction of 0.65 Ω-cm multicrystalline silicon (mc-Si) grown by the heat exchanger method (HEM). Contactless photoconductance decay (PCD) analysis revealed that the bulk lifetime (τb) in HEM samples after phosphorus gettering can exceed 100 μs. At these τb levels, the back surface recombination velocity (Sb) resulting from unoptimized back surface field (BSF) design becomes a major limitation to solar cell performance. By implementing an improved aluminum back surface field (Al-BSF), Sb values in this study were lowered from 8000-10000 cm/s range to 2000 cm/s for HEM mc-Si devices. This combination of high τb and moderately low S b resulted in the 18.6% device efficiency. Detailed model calculations indicate that lowering Sb further can raise the efficiency of similar HEM mc-Si devices above 19.0%, thus closing the efficiency gap between good quality, untextured single crystal and mc-Si solar cells. For less efficient devices formed on the same material, the presence of electrically active extended defects have been found to be the main cause for the performance degradation. A combination of light beam induced current (LBIC) scans as well as forward-biased current measurements have been used to analyze the effects of these extended defects on cell performance  相似文献   

19.
The effect of crystalline defects such as dislocations and grain boundary on the cutting behavior of multicrystalline solar silicon is investigated. Diamond scribing experiments reveal significant intra-granular variations in the critical depth of cut for ductile-to-brittle transition in the material. This is explained by characterizing the local dislocation density variations in (100) and (311) grains of a cast multicrystalline silicon wafer and measuring the corresponding elastic modulus, nanoindentation hardness, and fracture toughness. Measured elastic moduli are shown to be higher than theoretical values for defect-free single crystal silicon of the same crystallographic plane. For a given grain orientation, a higher dislocation density is shown to be correlated with higher fracture toughness and a larger critical depth of cut.  相似文献   

20.
The low cost and high quality of multicrystalline silicon (mc‐Si) based on directional solidification has become the main stream in photovoltaic (PV) industry. The mc‐Si quality affects directly the conversion efficiency of solar cells, and thus, it is crucial to the cost of PV electricity. With the breakthrough of crystal growth technology, the so‐called high‐performance mc‐Si has increased about 1% in solar cell efficiency from 16.6% in 2011 to 17.6% in 2012 based on the whole ingot performance. In this paper, we report our development of this high‐performance mc‐Si. The key ideas behind this technology for defect control are discussed. With the high‐performance mc‐Si, we have achieved an average efficiency of near 17.8% and an open‐circuit voltage (Voc) of 633 mV in production. The distribution of cell efficiency was rather narrow, and low‐efficiency cells (<17%) were also very few. The power of the 60‐cell module using the high‐efficiency cells could reach 261 W as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号