首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have indicated that although abundant levels of transgene expression could be achieved in the lungs of mice instilled with cationic lipid:pDNA complexes, the efficiency of gene transfer is low. As a consequence, a relatively large amount of the complex will need to be administered to the human lungs to achieve therapeutic efficacy for indications such as cystic fibrosis. Because all cationic lipids exhibit some level of cytotoxicity in vitro, we assessed the safety profile of one such cationic lipid, GL-67, following administration into the lungs of BALB/c mice. Dose-dependent pulmonary inflammation was observed that was characterized by infiltrates of neutrophils, and, to a lesser extent, macrophages and lymphocytes. The lesions in the lung were multifocal in nature and were manifested primarily at the junction of the terminal bronchioles and alveolar ducts. The degree of inflammation abated with time and there were no apparent permanent fibrotic lesions, even in animals that were treated at the highest doses. Analysis of the individual components of the complex revealed that the pulmonary inflammation was primarily cationic lipid-mediated with a minor contribution from the neutral co-lipid DOPE. Associated with the lesions in the lungs were elevated levels of the pro-inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma) that peaked at days 1-2 post-instillation but resolved to normal limits by day 14. Total cell counts, primarily of neutrophils, were also significantly elevated in the bronchoalveolar lavage fluids of GL-67:pDNA-treated mice between days 1 and 3 but returned to normal limits by day 14. No specific immune responses were detected against the cationic lipid or plasmid DNA in mice that had been either instilled or immunized with the individual components or complex, nor was there any evidence of complement activation. These studies indicate that a significant improvement in the potency of cationic lipid:pDNA formulations is desirable to minimize the toxicity associated with cationic lipids.  相似文献   

2.
The target cells for gene therapy of cystic fibrosis lung disease are the well differentiated cells that line airway lumens. Employing cultures of airway epithelial cells that grow like "islands" and exhibit a continuum of cellular differentiation, we studied the mechanisms that render well differentiated cells more difficult to transfect with cationic liposomes than poorly differentiated cells. The poorly differentiated cells at the edge of the islands were transfectable with liposome-DNA complexes (pCMVbeta:LipofectACE = 1:5 (w/w)), whereas the more differentiated cells in the center of the islands were not. Evaluation of the steps leading to lipid-mediated transfection revealed that edge cells bound more liposome-DNA complexes, in part due to a more negative surface charge (as measured by cationized ferritin binding), and that edge cells internalized more liposome-DNA complexes than central cells. Edge cells exhibited receptor-mediated endocytosis of LDL, pinocytosis of 10-nm microspheres, and phagocytosis of 2-microm microspheres, whereas central cells were only capable of receptor-mediated endocytosis. Cytochalasin B, which inhibited pinocytosis by 65% and phagocytosis by 93%, decreased edge cell liposome-DNA complex entry by 50%. Potassium depletion, which decreased phagocytosis by >90% but had no effect on pinocytosis, inhibited edge cell liposome-DNA complex entry by 71%. These results indicate that liposome-DNA complexes enter edge cells via phagocytosis and that this pathway is not detectable in central cells. In conclusion, both reduced negative surface charge and absence of phagocytosis internalization pathways in relatively differentiated cells may explain differentiation-dependent decrements in cationic liposome-mediated gene transfer in airway epithelia.  相似文献   

3.
Much of the morbidity and mortality seen in cystic fibrosis (CF) is related to chronic infection of the respiratory tract with Pseudomonas aeruginosa. Some studies have attributed the strong relationship between CF and Pseudomonas colonization to the presence of increased numbers of specific cell-surface receptors, although other work suggests that this relates to the presence of mucus. Several groups are now assessing the use of gene transfer as a novel form of treatment for CF. We have examined whether P. aeruginosa binding to freshly obtained CF respiratory epithelial cells is increased, and have studied the effects of transfer of the CF transmembrane conductance regulator (CFTR) gene on this attachment. Binding of P. aeruginosa to noncultured nasal epithelial cells from both CF patients (n = 31) and healthy controls (n = 15) was studied with scanning electron microscopy. Binding was also assessed for CF cells following transfection with CFTR/liposome complexes. Epifluorescence microscopy was used to assess the effects of gene transfer on chloride fluxes. Adherence of P. aeruginosa directly to the cell surface of CF airway epithelium was significantly (P < 0.001) increased over that in non-CF controls. Liposome-mediated CFTR gene transfer resulted in a significant (P < 0.01) reduction in the numbers of bacteria bound to ciliated epithelial cells. Fluorescence microscopy confirmed correction of the basic chloride defect. Thus, in CF, the absence of normal CFTR results in increased binding of P. aeruginosa to respiratory epithelial cells. This abnormality can be corrected in vitro by restoration of CFTR function. This has important implications both for the pathogenesis of CF and for the future application and assessment of gene therapy for this disease.  相似文献   

4.
To study retroviral gene transfer to airway epithelia, we used a transient transfection technique to generate high titers (approximately 10(9) infectious units/ml after concentration) of murine leukemia virus (MuLV)-derived vectors pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G). Transformed (CFT1) and primary airway epithelial cells were efficiently transduced by a VSV-G-pseudotyped lacZ vector (HIT-LZ) in vitro. CFT1 cells and primary cystic fibrosis (CF) airway cell monolayers infected with a vector (HIT-LCFSN) containing human CF transmembrane conductance regulator (CFTR) in the absence of selection expressed CFTR, as assessed by Western blot analysis, and exhibited functional correction of CFTR-mediated Cl- secretion. In vitro studies of persistence suggested that pseudotransduction was not a significant problem with our vector preparations. In a sulfur dioxide (SO2) inhalational injury model, bromodeoxyuridine (BrdU) incorporation rates were measured and found to exceed 50% in SO2-injured murine tracheal epithelium. HIT-LZ vector (multiplicity of infection of approximately 10) instilled into the SO2-injured tracheas of anesthetized mice transduced 6.1% +/- 1.3% of superficial airway cells in tracheas of weanling mice (3 to 4 weeks old; n = 10), compared to 1.4 +/- 0.9% in mice 5 weeks of age (n = 4) and 0.2% in mice older than 6 weeks (n = 15). No evidence for gene transfer following delivery of HIT-LZ to tracheas of either weanling or older mice not injured with SO2 was detected. Because only a small fraction of BrdU-labeled airway cells were transduced, we examined the stability of the vector. No significant loss of vector infectivity over intervals (2 h) paralleling those of in vivo protocols was detected in in vitro assays using CFT1 cells. In summary, high-titer vectors permitted complementation of defective CFTR-mediated Cl- transport in CF airway cells in vitro without selection and demonstrated that the age of the animal appeared to be a major factor affecting in vivo retroviral transduction efficiency.  相似文献   

5.
Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis(guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.  相似文献   

6.
We report the results of a double-blind, placebo-controlled trial in nine cystic fibrosis (CF) subjects receiving cationic liposome complexed with a complementary DNA encoding the CF transmembrane conductance regulator (CFTR), and six CF subjects receiving only liposome to the nasal epithelium. No adverse clinical effects were seen and nasal biopsies showed no histological or immuno-histological changes. A partial restoration of the deficit between CF and non-CF subjects of 20% was seen for the response to low Cl- perfusion following CFTR cDNA administration. This was maximal around day three and had reverted to pretreatment values by day seven. In some cases the response to low Cl- was within the range for non-CF subjects. Plasmid DNA and transgene-derived RNA were detected in the majority of treated subjects. Although these data are encouraging, it is likely that transfection efficiency and the duration of expression will need to be increased for therapeutic benefit.  相似文献   

7.
DNA plasmids formed particulate complexes with a variety of cationic polyamino acids and cationic lipids, which were used to transfect mammalian cells in culture. Complexation was studied by assaying for exclusion of ethidium using a fluorometric assay, which indicated that complexation with cationic polyamino acids took place with utilisation of the majority of charged functional groups. The particle sizes and zeta potentials of a range of complexes were determined. Generally polyamino acids formed uniform particles 80-120 nm in diameter in water, but their particle size increased on dilution of the particles in electrolytes or cell culture media. The efficiency of transfection was compared using complexes of pRSVlacZ, a reporter construct which expressed beta-galactosidase under the control of the Rous sarcoma virus promoter. Positively charged DNA/polyamino acid complexes were taken up by cells but required an endosomolytic agent, such as chloroquine, to facilitate transfection. Polyornithine complexes resulted in the highest levels of expression, in comparison with other homopolyamino acids (polyornithine>poly-L-lysine=poly-D-lysine>polyarginine). Copolyamino acids of lysine and alanine condensed DNA but were less active in transfection experiments. Copoly(L-Lys, L-Ala 1:1) was inactive even in the presence of chloroquine. In contrast DNA/cationic lipid complexes transfected cells spontaneously, and chloroquine did not improve the extent of expression, rather it usually reduced efficiency. There was little correlation between comparative efficiencies of lipid complexes between cell lines suggesting that the nature of the cell membrane and differences in mechanisms of internalisation were determinants of efficiency. In an effort to explore better cell culture models for gene delivery, monolayers of Caco-2 cells were transfected in filter culture. As the cells differentiated and formed a polarized monolayer, expression of beta-galactosidase was reduced until at day 27 expression was not significantly different from basal activity. The Caco-2 filter culture model merits further attention as a model of gene delivery to epithelial surfaces, such as would be encountered in the lung after inhalation.  相似文献   

8.
Several groups are assessing the use of cationic lipids for respiratory gene therapy. To date no human data are available regarding the safety of intra-pulmonary cationic lipid delivery. In preparation for a trial of pulmonary delivery of the CFTR gene, we have assessed the safety of nebulised lipid GL-67/DOPE/DMPE-PEG5000 (GL-67A), the cationic lipid formulation to be used in this study. Fifteen healthy volunteers were given incremental doses of GL-67A via a Pari LC Jet nebuliser; three volunteers in each of five dosing cohorts with a week interval between cohorts. Markers of safety included clinical assessment, measurement of lung function, chest CT scan, serological testing and analysis of induced sputum. Measurements were taken before administration and at intervals up to 21 days thereafter. No adverse clinical events were seen or any statistically significant changes in spirometry or gas transfer. There were no clinically significant changes in any of the blood parameters and no CT changes were seen. Comparisons of the cellular subpopulations (neutrophils, eosinophils, lymphocytes and macrophages) in induced sputum showed no significant alterations following administration of the GL-67A. This study suggests that a single application of aerosol formulation of GL-67A does not result in clinically detectable changes when given by nebulisation into the lungs of normal volunteers and provides an indication of a lipid dose tolerated in man.  相似文献   

9.
Cystic fibrosis (CF) has become a paradigm disorder for the clinical testing of gene therapies in the treatment of inherited disease. In recent years, efforts directed at gene therapy of CF have concentrated on improving gene delivery systems to the airway. Surrogate endpoints for complementation of CFTR dysfunction in the lung have been primarily dependent on correction of chloride transport abnormalities. However, it is now clear that the pathophysiology of CF airways disease is far more complex than can be solely attributed to altered chloride permeability. For example, in addition to functioning as a chloride channel, CFTR also has been implicated in the regulation of other apical membrane conductance pathways through interactions with the amiloride sensitive epithelial sodium channel (ENaC) and the outwardly rectifying chloride channel (ORCC). Superimposed on this functional diversity of CFTR is a highly regulated pattern of CFTR expression in the lung. This heterogeneity occurs at both the level of CFTR protein expression within different cell types in the airway and the anatomical location of these cells in the lung. Potential targets for gene therapy of CF include ciliated, non-ciliated, and goblet cells in the surface airway epithelium as well as submucosal glands within the interstitium of the airways. Each of these distinct cellular compartments may have functionally distinct roles in processes which affect the pathogenesis of CF airways disease, such as fluid and electrolyte balance. However, it is presently unclear which of these cellular targets are most pathophysiologic relevant with regard to gene therapy. Elucidation of the underlying mechanisms of CFTR function in the airway will allow for the rational design of gene therapy approaches for CF lung diseases. This review will provide a summary of the field's current knowledge regarding CFTR functional diversity in the airway and the implications of such diversity for gene therapies of CF lung disease.  相似文献   

10.
Cystic fibrosis (CF) lung disease has been linked to multiple primary defects in airway epithelia caused by a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) gene. These defects include altered Cl- and Na+ permeability as well as intracellular defects in glycoprotein processing. This apparent diversity in CFTR function is reflected in the complex patterning of CFTR expression in airway epithelia. Such complexities present challenges in the design of CF gene therapies that are capable of reconstituting the endogenous patterns of CFTR gene expression in appropriate target cells. Using a human bronchial xenograft model of the CF airway, we have evaluated the efficacy of recombinant adenoviral and cationic liposome-mediated gene transfer to correct Cl- permeability and mucous sulfation defects found in CF lung disease. Results from these studies demonstrated a clear vector-specific complementation profile for these two defects that was dependent on the type of cell transduced and the level of transgene expression. Single-dose administration of recombinant adenovirus effectively transduced high levels of CFTR transgene expression in 11 +/- 1% of epithelial cells and was capable of correcting cAMP-induced changes in Cl- permeability to 91 +/- 14% that seen in non-CF airways. However, this level of transgene expression was incapable of reversing defects in mucous sulfation due to the lack of efficient targeting to goblet cells. In contrast, cationic liposome-mediated delivery of CFTR encoding plasmids to CF airways achieved extremely low levels of transgene expression with insignificant correction (7.4 +/- 2.4%) of cAMP-induced Cl- permeability. This low level of transgene expression, however, efficiently reduced mucous sulfation to levels seen in non-CF airways. Differences in the complementation profiles of these two vectors in correcting Cl- permeability and mucous sulfation defects mirror the ability of recombinant adenovirus and liposomes to reconstitute only certain features of the endogenous distribution and abundance of CFTR protein expression. Such findings suggest that the level of intracellular CFTR required to facilitate proper glycoprotein processing may be much lower than that needed to mediate bulk Cl- flow across the airway epithelium. In summary, these data present the first example by which two different vector systems can efficiently complement independent primary defects associated with a single dysfunctional gene.  相似文献   

11.
Objective:The development of gene carriers for efficient gene delivery into cells has attracted growing attention in recent years. The aim of this study was to achieve a better outcome of AAV-293 cells transfection by plasmid DNA.Methods:We studied the optimal condition for higher efficiency of cationic lipid-mediated cell transfection. Four experimental groups were set. Plasmid DNA and liposome were mixed in each groups at different ratios (μg :μL), 1:2.5,1:3.5,1:4.0 and 1:5.0, respectively. LacZ gene functioned as reporter gene, measuring the transfection efficiency of the four groups using the method of X-gal staining. Results:When the ratio was 1:3.5, the cell transfection rate was the highest. While the ratio of 1:2.5recommended by product manual achieve the lowest transfection rate. Their difference had statistical significance. Conclusion:In order to obtain a higher transfection efficiency, optimization on conditions of the ratio of plasmid DNA to liposome is necessary in cell transfection.  相似文献   

12.
The introduction of high molecular weight DNA into mammalian cells is useful for gene expression studies. However, current transfection strategies are inefficient, necessitating propagation of stable DNA transformants prior to analysis of gene expression. Here we demonstrate that transient lipid-mediated DNA transfection can be used to assess gene expression from yeast artificial chromosomes (YACs) containing the 230 kb cystic fibrosis transmembrane conductance regulator gene ( CFTR ) and Escherichia coli lacZ . We also show that psoralen-UV inactivated adenovirus significantly enhances transfection efficiency. The ability to deliver high molecular weight DNA using lipid-mediated transfection should expedite the analysis of large human genes contained within artificial chromosome vectors.  相似文献   

13.
We have investigated the morphology and transfection activity of cationic liposome-DNA complexes (CLDC) under conditions relevant to both in vivo and in vitro studies. Moreover we have attempted to establish structure-function relationships relevant for high transfection activities under both conditions. CLDC were composed of dimethyldioctadecylammonium bromide with either 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol) interacting either with pre-condensed DNA or with uncondensed plasmid DNA. Furthermore for steric stabilization 1% poly(ethylene glycol)-phospholipid conjugate was added to CLDC containing Chol and plasmid DNA. The in vivo studies were carried out in mice following i.v. injection, and the in vitro studies were performed on SK-BR-3 human breast cancer cells in the presence of media with serum. The morphology of the CLDC, monitored by freeze-fracture electron microscopy, was investigated after mixing with mouse serum or the medium where the cells were kept. The substitution of DOPE with Chol, and the addition of N-[omega-methoxypoly(oxyethylene)-alpha-oxycarbonyl-DSPE+ ++ are producing CLDC which are stabilized with respect to time and serum, and are relatively small (100-300 nm). These stabilized complexes show high expression of a marker gene in mouse lungs reaching expression values up to 10 ng luciferase per mg tissue protein, but relatively low expression in SK-BR-3 cells in vitro. Additionally, some of the complexes containing pre-condensed DNA look like 'map-pin' structures showing heads of the size of liposomes and short, stiff and tapering tails. The in vivo transfection activity of these preparations is highest. Similar complexes containing DOPE rather than Chol as helper lipid precipitate in the presence of serum and especially of cell medium and convert into hexagonal lipid (HII) phase. Such complexes, despite their high transfection activity in vitro, show very little transfection activity in vivo. These comparisons may help us to understand the fundamental difference between in vitro and in vivo activity of CLDC: high in vitro transfection activity seems to be associated with hexagonal lipid precipitates whereas high in vivo activity seems to be related with small, stabilized complexes, which in our case also exhibit some protrusions (map-pin structures).  相似文献   

14.
Pulmonary surfactant lines the airway epithelium and creates a potential barrier to successful transfection of the epithelium in vivo. Based on the functional properties of pulmonary surfactant protein B (SP-B) and the fact that this protein is neither toxic nor immunogenic in the airway, we hypothesized that SP-B could be modified to deliver DNA to airway cells. We have modified native bovine SP-B by the covalent linkage of poly(lysine) (average molecular mass of 3.3 or 10 kDa) to the N terminus of SP-B and formed complexes between a test plasmid and the modified SP-B. Transfection efficiency was determined by transfection of pulmonary adenocarcinoma cells (H441) in culture with the test plasmid pCPA-RSV followed by measurement of activity of the reporter gene encoding chloramphenicol acetyltransferase (CAT). Transfections were performed with DNA.protein complexes using poly(lysine)10kDa-SP-B ([Lys]10kDa-SP-B) or poly(lysine)3.3kDa-SP-B ([Lys]3.3kDa-SP-B), and results were compared with transfections using unmodified poly(lysine).DNA, unmodified SP-B.DNA, or DNA only. For [Lys]10kDa-SP-B.pCPA-RSV preparations, CAT activity was readily detectable above the background of [Lys]3.3kDa-SP-B or unmodified SP-B. The SP-B-poly(lysine) conjugates were effective over a broad range of protein-to-DNA molar ratios, although they were optimal at approximately 500:1-1000:1. Transfection efficiency varied with the tested cell line but was not specific to airway cells. Addition of replication-defective adenovirus to the [Lys]10kDa-SP-B.pCPA-RSV complex enhanced CAT activity about 30-fold with respect to that produced by the [Lys]10kDa-SP-B.pCPA-RSV complex alone. This increase suggests routing of the adenoviral.[Lys]10kDa-SP-B.pCPA-RSV complex through an endosomal pathway. Effects of covalent modification on the secondary structure of SP-B were examined by Fourier transform infrared spectrometry (FTIR). Results of FTIR indicated that the conformation of [Lys]10kDa-SP-B was comprised primarily of alpha-helical structure compared with a predominantly aggregated structure of unmodified poly(lysine). We conclude that poly(lysine) conjugates of SP-B effectively deliver DNA in vitro and may have utility as DNA delivery vehicles to the airway in vivo.  相似文献   

15.
PURPOSE: Cationic lipid/DNA complexes have been proposed as a method of in vivo gene delivery via intravenous or intramuscular injection. A concern with using these polycationic molecules is whether they are associated with tissue toxicity at the injection site. Therefore, the objective of these studies was to investigate the myotoxic potential of selected non-viral gene delivery macromolecules (e.g., cationic lipids and polymers) with and without plasmid DNA (pDNA) in vitro. METHODS: Myotoxicity was assessed by the cumulative release of creatine kinase (CK) over 90 minutes from the isolated rodent extensor digitorum longus muscle into a carbogenated balanced salt solution (BBS, pH 7.4, 37 degrees C) following a 15 microL injection of the test formulation. Phenytoin (Dilantin) and normal saline served as positive and negative controls, respectively. RESULTS: The myotoxicity of plasmid DNA (pDNA, approximately 5000bp, 1 mg/ml) was not statistically different from normal saline. However, the myotoxicity of Dilantin was 16-times higher than either normal saline or pDNA (p < 0.05). Cationic liposomes were found to be less myotoxic than polylysine and PAMAM dendrimers. Polylysine's myotoxicity was found to be dependent upon concentration and molecular weight. The myotoxicity of formulations of cationic liposomes(s), lower molecular weight polylysine (25,000) and higher concentration of PAMAM dendrimers with pDNA were found to be statistically less significant than those formulations without pDNA. CONCLUSIONS: The cationic liposomes were less myotoxic compared to the dendrimers and polylysine. Myotoxicity was dependent upon the type of cationic lipid macromolecule, concentration, molecular weight and the presence of pDNA. A possible explanation for this reduced tissue damage in cationic lipids complexed with pDNA is that the formation of complex reduces the overall positive charge of the injectable system resulting in less damage.  相似文献   

16.
It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections.  相似文献   

17.
Previous studies have indicated that milrinone, a specific type III phosphodiesterase inhibitor, may be able to induce chloride secretion in cystic fibrosis (CF) tissues. We have now assessed the effect of this agent in vivo on the nasal epithelium of CF mutant mice and also in the nose and lungs of human subjects with CF. Wild-type mice showed a small hyperpolarization of the nasal potential difference (PD) in response to milrinone (100 microM, 1.6 +/- 0.6 mV, n = 8, P < 0.05). In contrast, CF mice carrying either the most common human mutation of the gene for the CF transmembrane regulator (CFTR), DeltaF508 (protein mislocalized), or the G551D mutation (protein normally localized) failed to demonstrate this response. Milrinone perfused alone had no significant effect on the baseline nasal PD of human subjects without CF (14.7 +/- 4.0 mV preperfusion; 15.3 +/- 4.6 mV postperfusion), but significantly (P < 0.05) augmented the hyperpolarization induced by a subsequently perfused low-chloride solution (with milrinone, 36.8 +/- 3.0 mV, n = 6; without milrinone, 18.1 +/- 2.2 mV, n = 19). In contrast, in human subjects with CF (n = 6), milrinone alone significantly (P < 0. 05) altered the nasal baseline PD (52.2 +/- 3.3 mV preperfusion; 57. 4 +/- 4.2 mV, postperfusion) but not the subsequent responses to the low-chloride solution (with milrinone, 1.1 +/- 2.2 mV, n = 4; without milrinone, 0.6 +/- 0.5 mV, n = 28) or to isoproterenol (100 microM). In a separate study in subjects (n = 6) with the DeltaF508 mutation, nasal coadministration of milrinone with isoproterenol produced no effect in the presence of amiloride and a low-chloride solution (-0.8 +/- 0.5 mV). This was also the case in the nasal epithelium of CF subjects (n = 4) carrying at least one G551D allele (-0.3 +/- 0.8 mV). Similarly, milrinone did not hyperpolarize the PD of either the tracheal (n = 6) or segmental (n = 6) airways of CF subjects (DeltaF508) when applied topically in vivo in the presence of amiloride, isoproterenol, or adenosine triphosphate (all 100 microM) in a low-chloride solution. These data do not support the use of milrinone to induce chloride secretion in CF airways in vivo.  相似文献   

18.
Dioctadecylamidoglycylspermine (DOGS, Transfectam) is a cationic lipid able to interact with DNA to form complexes that mediate efficient gene transfer into various eukaryotic cells. The state of condensation of the plasmid changes with the medium composition. We therefore investigated to what extent the DNA condensation buffer influences the transfection efficiency of Transfectam/DNA particles. Our results show that in a variety of cell lines, a greater than 100-fold difference in luciferase gene expression is observed with Transfectam/DNA complexes at a +/- charge ratio of 0.75 depending on the conditions of complex formation. The best transfection conditions consisted of particles formed in RPMI medium, NaHCO3/Na2HPO4 or sodium citrate solutions. Mixing in a 150 mM sodium chloride solution (as recommended) resulted in lower gene expression. When the helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was present in the DNA/cationic lipid formulation, the increase in reporter activity was also observed, although to a lower extent. Thus, choosing the optimal conditions for formulating DNA/lipid complexes considerably reduces the amount of lipid and DNA needed to obtain maximum gene transfer.  相似文献   

19.
With the aim of developing new gene transfer tools for treating CF with gene therapy, we have synthesized a novel family of molecules named cationic phosphonolipids. The most efficient among them were selected by in vitro screening to compare their activities in vivo in mouse lungs. We used a reporter gene whose activity was measured cytofluorimetrically (FACS-Gal assay) and by means of a chemiluminescence technique. These tests allowed us to identify the percentage of transfected cells and to quantify total beta-galactosidase in the lungs. This enabled us to identify two molecules, significantly efficient in comparison with DNA alone: GLB73 (p = 0.0015) and GLB253 (p = 0.007). Their use resulted in a time lag between transfection and maximum efficiency: maximum efficiency was observed 4 days after transfection with GLB73, whereas it was noticeable only on day 7 with GLB253. Moreover, from toxicity studies carried out in vivo, GLB73 seems to be nontoxic. In vivo results were correlated with in vitro results obtained with CF epithelial cell lines. Consequently, GLB73 is a potential candidate for phase I clinical trials in humans.  相似文献   

20.
Nebulisation is currently the most acceptable and practical delivery system for repeated applications of gene therapy to the lower airways of cystic fibrosis (CF) patients. We have assessed whether this route of administration offers other benefits with regard to respiratory gene transfer. A standard jet nebuliser (Acorn System 22, Medicaid) was used to transfer the reporter gene beta-galactosidase complexed with the cationic liposome DC-Chol/DOPE to three epithelial cell lines in vitro, two non-CF and one CF, using a novel collection system. In all three cell lines, nebulisation resulted in significantly (P < 0.05) improved transfection efficiency compared with instillation. At a constant DNA: liposome ratio of 1:5 (wt:wt), transfection efficiency was inversely related to increasing concentrations of DNA-liposomes before nebulisation. This effect was not related to the amount of DNA delivered and measurements of both zeta potential and mean aerodynamic particle size before and after nebulisation did not show concentration-related differences. The increased transfection efficiency did not relate either to the physical consequences of the nebulisation processes nor the effects of nebulisation on the complexes before instillation. Significantly increased transfection efficiency was seen following nebulisation with 95% O2/5% CO2 in comparison with 21% O2/78% N2 (air); this did not relate to changes in either the pH or temperature of the solution bathing the cells. The data confirm that nebulisation is appropriate for gene delivery to the lower airways in clinical practice and points to factors that may optimise gene transfer efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号