首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports on a study that examines the health and environmental risks of using town refuse ash in urban vegetable production in Jos, Nigeria, in terms of heavy metal accumulation in the food chain. Soil and crop samples, collected from five study farms, and samples of the river water used for irrigation, were analysed for seven heavy metals Fe, Mn, Zn, Cu, Ni, Cd and Pb. On the basis of the field data the paper discusses: (1) the potential soil deficiencies and toxicities; (2) the probable links between soil heavy metal levels and fertilisation practices; (3) the heavy metal concentrations in crop tissue in relation to crop growth and human health. The findings suggest that soil concentrations of the seven metals fall within 'typical' soil levels, and that there should not be any problems of either toxicities or deficiencies for crop growth. There was evidence of slight accumulation of Zn, Cu and Cd on some of the farms with a history of town refuse ash use. However, in all farms lettuce crops contained very large concentrations of Fe, and Pb concentrations that were 20 to 40 times higher than the WHO/FAO maximum recommended level in leafy vegetables for human consumption. The Cd content of carrot tissue was 10 times higher than the WHO/FAO recommended limit. The relatively small number of soil and crop samples precluded any formal attempt at correlating the concentrations of heavy metals found in the vegetable crops with the farm levels. Nevertheless, the data suggested that these were not linked. The paper goes on to consider various potential sources of the metals found in the crops, including irrigation water, town refuse ash and air-borne dust, and discusses additional health and environmental risks pertaining to the use of town refuse ash. Undoubtedly, the heavy Pb and Cd contamination of certain crops indicates the urgent need for future studies to ascertain the precise source of these metals, and although the practice of using town refuse ash does not appear to have resulted in large-scale contamination of soil in the farming area, there are a number of unsafe practices associated with it that call for the identification of strategies for the safe utilisation of urban waste in Jos.  相似文献   

2.
Agricultural uses of compost usually have a positive effect on the yield of vegetable crops for human consumption. However, compost that contains heavy metals can transfer these components to soils and plants. To evaluate the contamination levels of metals in soil, compost, and edible vegetables, the Mn, Zn, Pb, Cd, Cu, and Ni total contents were measured. Metal availability in soils, as well as other variables – the pH, CEC (cation exchange capacity), total nitrogen, organic carbon, particle size distribution and mineralogy of the clay fraction – were examined in the soil samples. The analysed compost samples were produced from urban solid waste, cattle manure, and edible vegetable and tree pruning residues. The values of pH, CEC, total nitrogen, organic matter, exchangeable hydrogen and carboxylic groups were measured in the compost samples. Of the six metals examined in the soils, in general, Mn and Zn attained the highest concentrations, followed by Cu. Relatively high Mn, Zn, Cu, Cd and Pb concentrations were found in the soils. Metal concentrations extracted with DTPA were below the critical levels in soils, i.e. the levels above which toxicity is likely. In general, Zn, Pb, Cd, Cu and Ni concentrations in compost were lower than those reported by other workers, while Mn levels were within the range for this metal in compost. The results showed that there was an effect of the vegetable type (p < 0.01) for all the parameters examined. High Pb concentrations were found in lettuce and chive as compared with the tolerance limit for this metal in fresh vegetables in Brazil. Cadmium concentrations were also enhanced in the fresh vegetables compared with the typical concentrations of metals in plants. Zinc, Cu, Cd, and Ni concentrations were lower than the tolerance limits established for foods by the Brazilian legislation.  相似文献   

3.
Wood ash, a by-product generated in power plants, can be used to fertilize forest plantations to replenish nutrients lost during harvesting. Although wood ash generally contains low levels of trace metals, release of some of these may occur soon after ash application in acid soils. The risk of heavy metal contamination associated with application of mixed wood ash was assessed in six Pinus radiata D. Don plantations, on two types of mineral soil differing in texture, drainage and CECe. Four of the stands received a single application of 4500 kg ha(-1) (March 2003), and in the other two stands the same treatment was applied over three consecutive years (2003-2005). Trace metal (Cd, Cr, Cu, Mn, Ni, Pb, Zn) concentrations were monitored throughout the 3 years in different components of the forest ecosystem--soil solid fraction, soil solution, tree needles, ground vegetation and different mushroom species. Repeated applications of wood ash led to moderate increases in soil extractable Mn and Zn, and Mn in all mushrooms species. However, the maximum concentrations did not reach levels potentially harmful to organisms. Concentrations of Zn, Cu and Cd decreased in some mushroom species, probably because of increased soil pH caused by the treatment. Heavy metal concentrations in tree needles and ground vegetation were not altered. Although the risk of heavy metal contamination appears to be low, the long-term effects of wood ash application must be assessed.  相似文献   

4.
This study assessed the accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater of 350 PE after three years of operation. Metal concentrations in the influent wastewater, effluent, sediment, leaves, stems, and belowground biomass of Phragmites australis were analysed. Spatial variations were assessed by sampling at increasing distance from the inlet and at different positions across the width of the reed bed. All metals except Fe and Mn were efficiently removed in the CW, total metal concentrations in the effluent complied with basic environmental quality standards for surface water, and dissolved metal concentrations were often lower than analytical detection limits. Removal efficiencies varied between 49% for Ni and 93% for Al. Export of dissolved Mn and particulate Fe occurred, probably related to redox conditions in the sediment. After 3 years of operation, the sediment in the inlet area was significantly contaminated with Zn, Cu, and Cd, whereas Pb could form a contamination problem within the near future. The Cr and Ni levels in the sediment were low throughout the entire reed bed. At this stage of operation, the contamination problem was still situated within the inlet area and metal concentrations in the sediment decreased towards background values further along the treatment path. An exponential decrease of the metal mass in the sediment and belowground biomass was seen for all metals except Mn. Contrary to the other metals, Mn concentrations in the sediment increased with distance. For all metals, less than 2% of the mass removed from the wastewater after passage through the reed bed is accumulated in the aboveground reed biomass. The sediment acts as the primary sink for metals.  相似文献   

5.
The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.  相似文献   

6.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese (Mn) compound currently added to unleaded gasoline in Canada. It has been suggested that the combustion of MMT containing Mn could cause various deleterious health effects in animals and humans at very high concentrations. This study evaluates the potential of dandelions (Taraxacum officinale) as bioindicators of Mn environmental contamination. Samples were picked at three different distances from a highway: a highly exposed site (E++), a lightly exposed site (E+) and a control site (E), located respectively at 10, 50 and 100 m. The total Mn, Mg, Ca, Al, Fe and Zn concentrations were measured in the soils and in the plants (flower, stem, leaves and root) by neutron activation analysis. Exchangeable Mn was measured in soils by atomic absorption spectrophotometry. Mn concentrations of the different parts of the plant and exchangeable Mn in soils were not correlated with distance from the roadway and, thus, do not seem to be a sensitive indicator of Mn contamination. Soil Mn concentrations were correlated with distance from the roadway. This suggests the hypothesis that the environmental fate of Mn from MMT sources could be associated with an increased total Mn in soil but does not lead to an increase in exchangeable Mn.  相似文献   

7.
Baseline values for heavy metals were proposed in Alicante (Spain), a representative agricultural area of the European Mediterranean region, as a basis to identify and assess soil contamination processes at regional level. Fifty-four agricultural plots were sampled and heavy metals concentrations were analysed for nine elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) by atomic absorption spectrometry (AAS) after acid digestion with HNO(3) and HCl in a microwave oven. Heavy metal concentrations obtained in the study area were similar to concentrations analysed by other authors within the European Mediterranean region. However, some agricultural plots with a high heavy metal content were identified by statistical treatment (boxplots) as outliers and, therefore, were not considered for establishing baseline values. Baseline values in Alicante were proposed by taking into account the statistical approach extensively used elsewhere, which refers to the increase in the mean plus twice the standard deviation. The baseline values were: 0.7 mg/kg for Cd, 11 mg/kg for Co, 36 mg/kg for Cr, 28 mg/kg for Cu, 19,822 mg/kg for Fe, 402 mg/kg for Mn, 31 mg/kg for Ni, 28 mg/kg for Pb and 83 mg/kg for Zn. The experience gained in this work further suggests that baseline values for heavy metals should be proposed in other areas. This is necessary to facilitate the identification of soil contamination processes over the whole European Mediterranean region as a basis to undertaking appropriate action to protect soil resource quality.  相似文献   

8.
The current study represents the first investigation of the suitability of marsupial and eutherian mammalian hair as indicator tissue for metal exposure and accumulation within contaminated Australian terrestrial ecosystems. A soil metal contamination gradient was established across 22 sites at increasing distances from a decommissioned Lead/Zinc smelter in NSW, Australia. Within each site, soil and small mammal populations were sampled. An Australian native marsupial, the insectivorous Brown Antechinus, Antechinus stuartii: Dasyuridae, and introduced rodents, the omnivorous Brown or Norway Rat, Rattus norvegicus: Muridae and the Black Rat, Rattus rattus: Muridae were assessed for hair concentrations of Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). Metals in soil were most elevated at sites within close proximity to the smelter, with soil metal concentrations decreasing with distance from the smelter. The non-essential metals Pb and Cd were accumulated in hair, both metals exhibiting positive linear relationships with environmental exposure (soil metal concentrations). When the variables of weight and snout-vent length were considered, no further contribution in terms of explaining the variability in hair Cd or Pb was observed for all species examined. The essential metals Cu and Zn were regulated in hair, remaining similar across the metal contamination gradient. A significant negative correlation between snout-vent length and hair Cu concentration was found for the Brown Rat; greater hair Cu concentrations were found in smaller individuals of this species. Accumulation of Pb to hair was similar among species while concentrations of Cd in Brown Rat hair were higher than both Black Rat and Brown Antechinus hair. As each of the three aforementioned species exhibit similar bioaccumulation relationships for Pb, we suggest that sampling hair from introduced rodents (pest species) may provide a suitable proxy for the assessment of Pb bioavailability for a range of small mammals within Australian urban remnants.  相似文献   

9.
The occurrence of many polluted areas as that affected by the accident of the Aznalcóllar pyrite mine has promoted phytoremediation as a technology able to reduce the risk of heavy metal contamination at low cost. White lupin plant has been considered a good candidate for phytoremediation. We studied the capacity of several complexing agents to improve the ability of white lupin for heavy metal phytoremediation in soils with multi-elemental pollution from acid pyritic sludge. Solution-soil interaction was studied and pot experiments with sludge-affected soil were carried out to this end. The interaction experiments indicated that EDTA and NTA were more efficient than malate and citrate in solubilizing metals (Fe, Mn, Cu, Zn, Cd), with minimum differences between EDTA and NTA. The pot trial showed that NTA was able to mobilize toxic elements from sludge-polluted soil and hence increasing their concentrations in plant (Mn, Cu, Zn, As, Cd). However, the NTA treatment promoted an increase of toxic elements concentrations, especially for As, Cd, Pb, in the lixiviates exceeding the maximum permissible levels, so a careful management of chelate is necessary.  相似文献   

10.
The concentrations of C, Fe, Mn, Zn, Cu, Pb and Cd were determined monthly in decomposing roots of Halimione portulacoides, using litterbag experiments, in two salt marshes of the Tagus estuary with different levels of contamination. Although carbon concentrations varied within a narrow interval during the experiment, litter decomposed rapidly in the first month (weight loss between 0.051 and 0.065 g d(-1)). The time variation of metals was examined in terms of Me/C ratios and metal stocks. Ratios of Fe/C and Mn/C and their metal stocks increased in spring, presumably due to the precipitation of oxides in the surface of decomposing roots. Subsequent decrease of Fe/C and Mn/C ratios suggests the use of Fe and Mn oxides, as electron acceptors, in the organic matter oxidation. Zinc, Cu, Pb and Cd ratios to C were, in general, higher than at initial conditions implying that metal that leached out was slower than carbon. However, metal stocks decreased during the experiment indicating that incorporation or sorption of metals in Fe and Mn oxides did not counterbalance the amount of Zn, Pb and Cd released from decomposing litter. An exception was observed for Cu, since stock in the less contaminated marsh (Pancas) increased during the decomposition, indicating that litter was efficient on Cu binding under more oxidising conditions. These results emphasize the importance of litter decomposition and sediment characteristics on metal cycling in salt marshes.  相似文献   

11.
Heavy metal content (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) was analysed in the edible parts of two types of horticultural crops (leaf and inflorescence crops) from 30 agricultural fields in Castellón (Spain), a representative area of the European Mediterranean region. Selected soil properties relevant to control the mobility and bioavaibility of heavy metals were analysed for the general characterisation of these agricultural soils. The levels of clay, high percentages of organic matter and the presence of carbonate seem to suggest an important retention of heavy metals by these components in most of these soils. However, the high salinity in some fields (>4 dS/m) seems to facilitate the mobility of some heavy metals (e.g. Cu). The mean values of total contents of heavy metals in soils were similar to values obtained in other works on Spanish agricultural soils. However, there were some fields with a metal content (particularly Cu, Pb or Zn) higher than these works, reflecting an important anthropogenic source. In seven fields, the crop contents of Cd and/or Pb were higher than the maximum levels established by the Commission Regulation no. 466/2001 for horticultural crops. Heavy metal contents in leaf crops were higher than in inflorescence crops, except for Zn. The differences for Cd, Cr, Cu, Fe and Mn contents between these two types of crops were statistically significant. The analysis of crop heavy metal contents showed a higher absorption and/or accumulation of heavy metals in leaf crops than in inflorescence crops. Differences in crop characteristics seem to be responsible for the differential accumulation of heavy metals. Furthermore, agronomic practices and other sources of heavy metals (e.g. atmospheric deposition for Cd and Pb) may also have some influence on crop accumulation. Given the relevance of horticultural crops in the Mediterranean diet, it is highly necessary to extend the experience of this work to other areas of the European Mediterranean region.  相似文献   

12.
The concentrations of heavy metals in the leaves of two aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq., and the corresponding water and sediment samples from the Donghe River in Jishou City of Hunan Province, China were studied to investigate metal contamination from the intensive industrial activities in the surrounding area. Results showed that the concentrations of heavy metals in the sediments, especially Cd, Mn and Pb, were much higher than the eco-toxic threshold values developed by the U. S. Environmental Protection Agency. Between the two plant species, P. pectinatus showed the higher capacity in metal accumulation. The highest concentrations of Cd, Pb, Cu, Zn and Mn were found in the leaves of P. pectinatus, reaching 596, 318, 62.4, 6590 and 16,000 mg kg(-1) (DW), respectively. Significantly positive relationships were observed among the concentrations of Zn, Cu and Mn in the leaves of both aquatic plants and those in water, indicating the potential use of the two plants for pollution monitoring of these metals. In addition, a laboratory experiment was conducted to investigate the ability of P. pectinatus and P. malaianus to remove heavy metals from contaminated river water. The average removal efficiencies by P. pectinatus and P. malaianus for Cd, Pb, Mn, Zn and Cu from the spiked Donghe River water were 92%, 79%, 86%, 67% and 70%, respectively. The results indicated that P. pectinatus and P. malaianus had high capabilities to remove heavy metals directly from the contaminated water. The potential use of these plants in wastewater treatment is worth further exploration.  相似文献   

13.
王建波  化伟 《矿产勘查》2019,(6):1508-1512
研究了兰州某铝厂旧址周围土壤重金属形态特征,找出了该土壤中重金属元素的形态分布及变化规律,分析了引起7种重金属元素形态变化的主要因子。结果表明,该铝厂周围土壤重金属Cu、Mn、Ni、Pb、Zn、Cr、Cd污染严重。各重金属元素的含量随样品采集半径的增加而减少,7种重金属的形态分析结果表明,重金属污染主要以残渣态为主,Cd、Mn和Cr的弱酸态占有较大的比例,其中Cd的生态风险性最高。同时对重金属的环境效应和生态风险作出一定的评价,为治理和改善该地区土壤环境质量积累科学数据。  相似文献   

14.
The topic of this study is the effect of anthropogenic metals on the geochemical quality of urban soils. This is accomplished by comparing the metal contents and associations between two alluvial soils of the lower Mississippi River Delta, freshly deposited alluvial parent materials and alluvial soils collected from a nearby urban environment. Fresh alluvium samples (n = 97) were collected from the Bonnet Carré Spillway. The urban alluvial soil samples (n = 4026) were collected from New Orleans and stratified by census tracts (n = 286). The Spillway samples tend to have less Pb and Zn than generally noted for the baseline of natural soils. Except for Mn and V, Spillway alluvium contains significantly less metal than urban soils. For Spillway samples, the median metal content (in microg g(-1)) is 4.7 Pb, 11.1 Zn, 0.7 Cd, 164 Mn, 0.8 Cr, 3.9 Ni, 3.2 V, and 3.9 Cu. For urban soils, the median metal content (in microg g(-1)) is 120 Pb, 130 Zn, 3.2 Cd, 138 Mn, 2.1 Cr, 9.8 Ni, 3.8 V, and 12.7 Cu. Metal associations also differ between Spillway alluvium and urban alluvial soils. Fresh alluvium correlation coefficients between individual metals vary from 0.87 to 0.99 (P < 10(-13)) except for Cr which ranges from 0.57 to 0.68 (P < 10(-7)). The urban soil correlation coefficients for metals and the index value are 0.40-0.98. In urban soils, Pb, Zn, Cr, and Cu are dominant metals and highly associated, with a correlation coefficient ranging from 0.83 to 0.98 (P < 10(-25)). Their strong association justifies the use of GIS to map the integrated soil metal index (sum of the medians of metals by census tract) of New Orleans. Although also positively correlated (0.40-0.68, P < 10(-10)), Cd, Mn, Ni and V differ in their distribution in the city compared to Pb, Zn, Cr and Cu. Overall, significantly higher metal values occur in the inner city and lower values occur in outlying areas. The human health impact of the mixture of metals is not well understood. This study provides empirical data about the mixture and distribution of metals in New Orleans alluvial soils. Given common technical development, especially of traffic flows in cities, similar patterns of soil metals are expected for all US cities and probably international cities as well. Primary prevention of urban metal accumulations is necessary to enhance and sustain the development of urban culture.  相似文献   

15.
The nutritional status and trace element contamination of holm oak woodlands in Vesuvius National Park were assessed by analyses of Quercus ilex L. leaves and surrounding soils. The concentrations of Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V and Zn were measured in 1-year-old leaves, and in the soils at 0-5 and 15-20 cm depths. The potentially available concentrations were also measured for the soils. The leaf element concentrations were similar to the Q. ilex chemical fingerprint, thus indicating a good nutritional status and the absence of short-term trace element depositions. Total K and V were more abundant in the deep soil layers than in the surface ones, whereas Cd and Pb showed higher values in the surface soils. This suggests that long-term soil accumulations of Cd and Pb are due to atmospheric input. The soil availabilities of Cd, Pb and Zn were high, and Cr availability was very low. A correlation between the available concentrations in the deep soil layers and leaf concentrations was found only for Zn.  相似文献   

16.
The effects of willow stand development on top soil properties of uncontaminated infrastructure spoil landfills (ISL) and contaminated dredged sediment landfills (DSL) were assessed. For the ISL, significant increases in Cd, Zn and organic C levels in the top soil (0-10 cm) were detected more than 20 years after disposal. The increases in Cd and Zn concentrations in the top soil were attributed to leaf-associated metal transfer and leaf fall: the relatively high Cd and Zn concentrations in willow leaves resulted in top soil enrichment for these elements. Higher absolute amounts of Cd, Zn and Mn were taken up and recycled during leaf fall on DSL than on ISL, but did not result in significant differences between top soil and deeper soil (10-30 cm) for the DSL. Direct comparison of top soil development between both types of sites is not possible due to differences in stand age and time since disposal. The DSL were characterised by a higher short-range variance for the Cd, Cr, Cu, Pb and Zn concentrations in the top soil than the ISL. During the first years of ripening and dewatering, significant sulphate leaching occurred in the top soil of the DSL.  相似文献   

17.
Soybean (Glycine max (L.) Merr.) uptake of the elements, Cd, Ni, Pb, Cu, Zn and Mn, from a sewage sludge-amended Mecklenburg soil was conducted in the greenhouse. “Bragg” soybeans were grown in pots for five weeks at which time the tops and roots were sampled separately for elemental analysis. Soil samples from each pot were extracted with DTPA (diethylenetriaminepentaacetic acid) and the concentration of extractable elements correlated with the elemental content in the soybean plant. There was a significant increase in dry matter production with sludge treatment. Concentrations of Cd, Ni and Pb in the soybean shoots and roots increased from sludge-amended soil as compared to the control. The metal concentration in the soybean tissue increased with increasing levels of sludge amendment. Uptake of the heavy metals was greater by the roots than by the shoots indicating some barrier to movement of the metals from roots to shoots. The DTPA extractable Cd in sludge-amended soil increased significantly, and showed correlation to the soybean tissue metal concentrations. As for the micronutrients, Cu increased in the soybean shoot as the extractable Cu increased. There was no significant relationship between soybean tissue Zn and Mn and extractable Zn and Mn.  相似文献   

18.
In the present investigation, the flocculation of dissolved Cd, Cu, Ni, Pb, Mn and Zn with initial concentrations of 1, 2.5 and 5 mg/L in Tadjan River water during mixing with the Caspian Sea water has been studied in order to determine estuarine capacity to remove dissolved metals in the accidental contamination of the river. The flocculation process was investigated on a series of mixtures with salinities ranging from 0.1 to 11 p.p.t. The flocculation rates were indicative of the nonconservative behaviour of Cd, Cu, Ni, Pb, Mn and Zn during estuarine mixing. The order of the final flocculation rate of dissolved metals at 1, 2.5 and 5 mg/L of initial metal concentrations in the river water is as follows:Cu (99%)>Cd (95%)>Zn (88%)>Mn (85%)>Pb (83%)>Ni (73%), Cu(95.6%)>Pb(92.4%)>Cd (90%)>Zn(88.4%)>Mn (81.6%)>Ni(78.8%) and Cd (100%)>Cu(88%)>Ni (85.2%)>Pb (84%)>Zn (83.2%)>Mn (81.2%), respectively. The results also revealed that removal of dissolved metals is not influenced by pH changes and precipitation processes. The flocculation rates revealed that the overall dissolved metal pollution loads may be reduced to about 70% up to about more than 90% during estuarine mixing of Tadjan River with the Caspian Sea water.  相似文献   

19.
Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (<1 microm) particles, although there were larger particles (1-5 microm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.  相似文献   

20.
Metal and bioessential element concentrations were measured in three species of 17-year periodical cicadas (Magicicada spp.) to determine how cicada tissue chemistry is affected by soil chemistry, measure the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils, and assess the potential risks of observed metal contamination for wildlife. Periodical cicada nymphs feed on root xylem fluids for 13 or 17 years of underground development. The nymphs then emerge synchronously at high densities, before leaving their nymphal keratin exoskeleton and molting into their adult form. Cicadas are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland ecosystems. Nymphal exoskeletons and whole adult cicadas were sampled in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during the Brood X emergence in May and June, 2004. Elements, such as Al, Fe, and Pb, are strongly enriched in the nymphal exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe and Pb, when normalized to relatively inert soil constituents such as Al and Ce, are similar in both the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) might control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, indicate strong enrichment in cicada tissues relative to soil, implying selective absorption and retention by xylem fluids, the cicada nymphs themselves, or both. Element enrichment patterns in cicada tissues are similar to enrichment patterns observed in xylem fluids from tree roots. Chalcophile elements and heavy metals accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in the nymphal exoskeleton show a positive correlation with soil metal concentrations, with Au exhibiting particularly strong enrichment in the exoskeleton relative to soil concentrations. Metal concentrations in adult bodies do not correlate with soil chemistry. Bioessential elements S, Ca, Mn, Fe, and Zn differed by sex in adults, whereas Na, Mg, K, Ca, Mn, Fe, Zn, and As differed by species. Body concentrations of Ca differed by site conditions (orchard or reference setting). The high Pb contents of orchard soils contaminated by arsenical pesticide residues might inhibit Ca uptake by cicada nymphs. The adult cicadas contain concentrations of metals similar to, or less than, other invertebrates, such as earthworms. There does not appear to be a dietary threat to birds or other consumers of adult cicadas based on Maximum Tolerable Dietary Level (MTDL) Guidelines developed for agricultural animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号