共查询到20条相似文献,搜索用时 0 毫秒
1.
研究风电功率预测技术对于减轻其输出电能的随机性对电力系统的影响具有重要意义。首先结合风电监控系统数据库中的历史功率数据和环境参数形成样本数据,同时采用遗传算法优化该模型的核函数类型、核函数参数及错误惩罚因子等参数,建立了GA-SVM模型,提高了模型参数组合优化选择的效率和预测精度。最后结合实例验证,并与标准SVM方法和BP神经网络方法比较。预测效果表明:所提出的GA-SVM优化模型在超短期风电功率预测上具有更优的学习能力和泛化能力。 相似文献
3.
针对风电场功率不稳定特性引起风电功率预测精度不高的问题,提出1种基于EEMD-PSO-ELM的超短期风电功率预测方法。首先,采用集合经验模态分解(ensemble empirical mode decomposition,EEMD)将风电功率序列分解为若干个模态,从而避免了模态混叠;其次,利用相空间重构对分解得到的模态计算Hurst指数,并依据Hurst指数得到最优子序列;最后,采用粒子群算法(particle swarm optimization,PSO)-极限学习机(extreme learning machine,ELM)模型对最优子序列风电功率进行预测。以某风电场为例,采用预测模型进行分析,实验结果表明EEMD-PSO-ELM预测模型的风电功率预测精度更高。 相似文献
4.
准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。 相似文献
5.
6.
针对风能的波动性和间歇性,提出了一种基于改善集成经验模式分解(MEEMD)和最小二乘支持向量机(LSSVM)的风电功率超短期预测方法,首先利用MEEMD将功率序列根据频率高低分解为特征不同的本征模态分量(IMF),然后计算各IMF的样本熵,合并熵值相似的IMF分量。对合并之后的各IMF分量分别进行LSSVM子模型建模,最后将各分量建模结果叠加得到功率预测曲线。基于大连风电场现场数据的检验结果说明,该方法预测精度较高且运算时间合理,适用于工程上风电功率的预测。 相似文献
7.
为了提高风电功率预测精度,保证风能的有效利用,提出一种基于变分模态分解和改进灰狼算法优化支持向量机的风电功率超短期组合预测模型。采用变分模态分解将风电功率序列分解为一系列具有不同中心频率的模态分量以降低其随机性,将各分量分别建立支持向量机预测模型,并采用改进灰狼算法对其参数寻优,将各分量的预测值叠加重构得到最终的预测值。实例仿真表明,所提的组合预测模型与其他预测模型相比具有更高的预测精度。 相似文献
8.
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。 相似文献
9.
针对风机出力的随机性、波动性和不确定性,提出了一种基于解析模态分解(AMD)和改进布谷鸟优化支持向量机(ICSA-SVM)参数的超短期风电功率组合预测方法。首先,利用解析模态分解将风功率序列分解为不同频率范围的分量,减小不同频率范围间的相互影响。然后针对各序列特点,采用改进布谷鸟方法分别寻找各自支持向量机的惩罚因子参数和核函数参数,以提高单个模型的预测精度。最后对预测结果进行叠加和误差分析。仿真算例表明,所提出的方法可以很好地跟踪风电功率的变化,有效地提高风电功率预测精度。 相似文献
10.
《电网技术》2021,45(3):855-862,中插2-中插3
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementaryensembleempiricalmode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(leastsquaressupportvectorregression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。 相似文献
11.
针对风电功率的高随机和强波动性,提出一种基于EMD-SA-SVR的风电功率超短期预测方法。采用经验模态分解(Empirical Mode Decomposition, EMD)提取风电功率序列的不同特征。将原始序列分解为多个更具规律的模态,针对每个模态序列建立各自的预测模型,以消除不同特征之间的相互影响。鉴于支持向量回归(Support Vector Regression, SVR)好的泛化能力,研究建立基于SVR的各模态预测模型。进一步采用模拟退火(Simulated Annealing,SA)算法对SVR参数进行优化以解决模型选择的多极值复杂非线性问题,获得各模态分量的最优模型,进而汇总各模态分量的结果得到风电功率预测值。在某风电场历史数据上的对比分析表明,EMD-SA-SVR模型可以有效提高风电功率超短期预测精度。 相似文献
12.
为了提高风电场输出功率的预测精度,应用小波分析(WD)和布谷鸟优化支持向量机(CS-SVM)算法对风电功率进行超短期预测,对比于通过预测风速间接求得的风电功率更加直接且准确。首先,利用WD与重构,将风电功率模型分解成近似序列和细节序列,然后利用CS-SVM算法对每个序列进行预测,得到每个序列的预测结果,最后把各个序列的预测结果叠加,形成风电功率的最终预测值。算例计算结果表明,预测结果具有较高的精度,与SVM以及其他方法优化的SVM预测结果相比,文中使用的方法预测结果更加准确,具有较强的优越性和实用性。 相似文献
13.
针对风电数据存在维度多、波动大等特点而加大风电功率预测难度的问题,本文提出一种基于卷积神经网络(convolutional neural networks,CNN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的风电功率预测模型.该模型通过Pearson相关系数筛选最佳的历史功率和气象因素组合,使用CNN网络提取原始数据的时序特征,然后利用BiGRU网络捕捉这些特征之间的时序依赖关系,最终得到风功率预测值.算例分析表明,本文所提CNN-BiGRU模型比传统的BP和BiGRU神经网络模型具有更高的预测精度. 相似文献
14.
针对大规模风电场风电功率的非线性特性,采用最小二乘支持向量机(LS-SVM)的预测模型。由于LS-SVM的参数选择直接影响着模型的预测精度,于是采用一种基于量子粒子群优化方法来选择模型的超参数。为了弥补模型损失的鲁棒性,通过给每个样本误差不同的权系数,建立了具有良好泛化性能的WLS-SVM回归模型,从而进一步提高了模型预测的精度。本文提出一种基于量子粒子群优化(Quantum-behaved Particle Swarm Optimization, QPSO)参数选择的加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine, WLS- SVM)的超短期风电功率预测模型。应用上述方法对内蒙古地区大型风电场进行了预测,结果证明了该方法的有效性。 相似文献
15.
为解决基于动态神经网络的超短期风电功率预测方法中预测模型输入变量多、模型复杂等问题,文中将平均影响值(MIV)和主元分析(PCA)方法相结合,对预测模型进行了优化。MIV方法表征了输入变量对输出的影响程度,可筛选出对预测输出具有最大影响的输入变量,简化预测模型,但变量的信息利用率不高。PCA法从剩余的输入变量中提取出主元,通过增加少量的主元变量提高信息利用率,弥补MIV方法的不足。数据分析及实验结果表明,通过MIV和PCA法优化的预测模型的输入变量能在获得较高的累计贡献率的同时降低模型复杂度,保留原系统的重要信息,并降低模型引入噪声的风险,使得风电功率预测精度得到显著提高。 相似文献
16.
为提高风电功率预测精度,提出了一种基于贝叶斯优化的变分模态分解(variationalmodedecomposition,VMD)和门控循环单元(gatedrecurrentunit, GRU)相结合的风电功率预测方法。首先使用VMD算法对风电功率序列进行分解,并根据排列熵(permutation entropy, PE)的大小来确定序列分解的最佳模态数。然后将分解后得到的子序列分量与关键气象变量数据结合构成模型输入特征。使用GRU网络对各个子序列分量分别进行预测,并将各个子序列分量的预测结果进行重构得到风电功率预测结果。最后采用贝叶斯优化方法对各个子序列预测模型的网络初始超参数进行优化。采用某风电场的风电数据对所提模型进行验证,并与其他6种模型进行性能对比。结果表明,基于贝叶斯优化的VMD-GRU预测模型明显优于其他模型,具有较好的泛化能力,能够有效提高风电功率预测精度。 相似文献
17.
18.
19.