共查询到18条相似文献,搜索用时 62 毫秒
2.
采用BP神经网络算法进行短期电力负荷预测存在缺点,需要进行完善和改进。介绍了BP神经网络算法进行短期负荷预测的原理,以及遗传算法的基本原理。具体叙述遗传算法对BP神经网络算法进行优化的实现步骤。优化后的算法避免了原来初始权值和阈值选择的盲目性,提高了BP神经网络算法短期负荷预测的精度和效率。通过具体算例,证明了此算法的可行性和有效性。 相似文献
3.
4.
由于短期电力负荷、用电量受众多复杂的非线性因素影响,传统单一BP神经网络预测方法存在精度不高、收敛速度慢等问题。为了提高收敛速度和预测精度,根据影响因素特性将其分为长期、短期性影响因素,根据负荷、用电量曲线特性分别将其分为基准量和敏感量,并用决定系数法确定所需短期影响因素。应用遗传算法对BP神经网络的初始权值和阈值进行优化,将BP神经预测误差作为遗传算法的适应度函数,建立了基于特性分析的改进BP神经网络短期电力预测方法。选取中部某省2015—2019五年"迎峰度冬"期间数据进行验证,结果表明,该预测方法的精度和收敛速度都得到了提高。 相似文献
5.
介绍了BP神经网络算法的原理以及对其采用非线性阻尼最小二乘法Levenberg-Marquardt进行优化的的方法。针对短期电力负荷的特点,设计了预测短期电力负荷的BP神经网络模型和预测流程,并结合具体实例,采用MATLAB神经网络工具箱编程。与实例结果的比较表明,此方法预测短期电力负荷具有实用价值。 相似文献
6.
7.
8.
9.
基于小波神经网络的中长期电力负荷预测 总被引:2,自引:0,他引:2
电力系统负荷预测是1项复杂的系统工程,其不仅涉及的领域广泛,而且不确定性的因素较多。文中在传统BP神经网络算法、改进型BP神经网络算法基础上,将BP神经网络与小波分析相结合,构建了小波神经网络模型,然后分别应用BP神经网络、改进型BP神经网络和小波神经网络对宁夏石嘴山地区电力负荷进行了中长期预测。通过对比分析表明,采用小波神经网络获得的预测数据比前2种方法获得的预测数据误差均要小。这说明了小波神经网络的预测结果更加准确,即采用BP神经网络与小波分析相结合的方法比单纯地采用BP神经网络算法进行电网负荷预测的效果更佳 相似文献
10.
建立BP神经网络模型,解决了建筑物电力负荷预测由于强耦合性、滞后性和非线性而难于建立模型的问题。利用遗传算法的全局搜索能力对网络模型进行权值优化,解决了传统BP神经网络易陷入局部最优的困扰,使预测更为精准。通过MATLAB软件进行仿真试验,验证了此方法的可行性。 相似文献
11.
基于改进型BP神经网络的短期电力负荷预测 总被引:2,自引:1,他引:2
科学、准确的短期电力负荷预测有利于提高电力系统运行的经济性和安全性,向用户提供高质量的电力。提出一种基于改进型BP神经网络的短期负荷预测方法,并充分考虑建模时复杂气候敏感因素的影响,对输入校本的选取、预测模型的建立进行了论述。算例表明所提出方法具有较高的预测精度,负荷预测结果的相对误差小于3.63%。 相似文献
12.
13.
提出了一种基于小波系数和BP神经网络相结合的电力系统短期负荷预测新方法.把过去直接对负荷序列的预测替代为对小波系数的预测,并对小波细节系数作分层软阈值处理.详细介绍了小波系数结合BP神经网络进行预测的新方法,并给出算例验证. 相似文献
14.
乔维德 《电力系统保护与控制》2007,35(17)
粒子群优化(PSO)算法是基于群智能的全局优化技术,它通过粒子间的相互作用,对解空间进行智能搜索,从而发现最优解.该文对基本粒子群算法进行改进,并将改进粒子群优化算法与误差反向传播(BP)算法结合起来构成的混合算法用于训练人工神经网络,对短期电力负荷进行预测.实践结果表明:改进PSO-BP算法有效地解决常规BP算法学习网络权值和阈值收敛速度慢、易陷入局部极小等问题,具有较快的收敛速度和较高的预测精度. 相似文献
15.
乔维德 《电力系统保护与控制》2007,35(17):17-21
粒子群优化(PSO)算法是基于群智能的全局优化技术,它通过粒子间的相互作用,对解空间进行智能搜索,从而发现最优解。该文对基本粒子群算法进行改进,并将改进粒子群优化算法与误差反向传播(BP)算法结合起来构成的混合算法用于训练人工神经网络,对短期电力负荷进行预测。实践结果表明:改进PSO-BP算法有效地解决常规BP算法学习网络权值和阈值收敛速度慢、易陷入局部极小等问题,具有较快的收敛速度和较高的预测精度。 相似文献
16.
随着神经网络理论在电力行业应用不断广泛和深入,神经网络用于电力负荷预测也取得一定成果。为了减小负荷预测的误差,提高预测精度,将BP神经网络引入电站负荷预测,首先介绍了电力负荷传统预测方法,进而引出了人工神经网络预测方法,分析了BP神经网络原理、模型及算法,通过m语言在MATLAB中建立了负荷预测模型,对实际电站数据进行了仿真分析,得到了训练误差曲线,验证了BP神经网络应用于负荷预测满足一般精度的要求,从而改进了传统方法带来的误差,使预测结果接近实际值。 相似文献
17.
将Prophet算法引入负荷预测领域,并结合XGBoost算法提升Prophet负荷预测准确性。Prophet算法基于时间序列分解及机器学习的拟合,将负荷数据分解为趋势项、周期项、随机波动项3部分,引入XGBoost算法改进Prophet算法对随机波动项的预测,将XGBoost算法对随机波动的预测结果与Prophet算法对趋势项和周期项的预测结果叠加,获得最终的预测结果。该算法适用于用电负荷这种具备一定周期变化特征的序列,易于理解,预测准确性较高。通过某地区用电信息采集系统提供的专公变用户日冻结数据实验验证,结果表明在相同条件下,改进后的算法预测的结果的平均绝对误差百分比较原始的Prophet算法可降低2.5%,同时均方根误差降低幅度可达30.79%,体现出显著的改进效果。 相似文献
18.
结合粗糙集理论、遗传算法和神经网络的优点,提出了一种新的短期负荷预测方法一基于粗糙集的遗传神经网络负荷预测模型.由于影响短期负荷预测的因素众多,通过粗糙集理论中的属性约简对神经网络的输入进行了筛选,找到与预测量相关性大的影响因素作为输入量,减少了神经网络的工作量.为了解决神经网络自身收敛速度慢和容易陷入局部极小的缺陷,利用具有全局搜索能力强等优点的遗传算法与之相结合.实验证明了该算法在速度和精度上都能得到了提高,此方法在短期负荷预测中是可行性、有效性. 相似文献