首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The subcellular localization of human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) was examined by subcellular fractionation. In HIV-1-infected peripheral blood mononuclear cells, Vpr was found in the nuclear and membrane fractions as well as the conditioned medium. Expression of Vpr without other HIV-1 proteins, in two different eukaryotic expression systems, demonstrated a predominant localization of Vpr in the nuclear matrix and chromatin extract fractions. Deletion of the carboxyl-terminal 19-amino-acid arginine-rich sequence impaired Vpr nuclear localization. Indirect immunofluorescence confirmed the nuclear localization of Vpr and also indicated a perinuclear location. Expression of Vpr alone did not result in export of the protein from the cell, but when coexpressed with the Gag protein, Vpr was exported and found in virus-like particles. A truncated Gag protein, missing the p6 sequence and a portion of the p9 sequence, was incapable of exporting Vpr from the cell. Regulation of Vpr localization may be important in the influence of this protein on virus replication.  相似文献   

2.
Replication of human immunodeficiency virus type 1 (HIV-1) in non-dividing cells depends critically on import of the viral preintegration complex into the nucleus. Recent evidence suggests that viral protein R (Vpr) plays a key regulatory role in this process by binding to karyopherin alpha, a cellular receptor for nuclear localization signals, and increasing its affinity for the nuclear localization signals. An in vitro binding assay was used to investigate the role of Vpr in docking of the HIV-1 preintegration complex (PIC) to the nuclear pore complex. Mutant HIV-1 PICs that lack Vpr were impaired in the ability to dock to isolated nuclei and recombinant nucleoporins. Although Vpr by itself associated with nucleoporins, the docking of Vpr+ PICs was dependent on karyopherin beta and was blocked by antibodies to beta. Vpr stabilized docking by preventing nucleoporin-stimulated dissociation of the import complex. These results suggest a biochemical mechanism for Vpr function in transport of the HIV-1 genome across the nuclear pore complex.  相似文献   

3.
4.
5.
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.  相似文献   

6.
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.  相似文献   

7.
The HIV-1 regulatory protein Vpr (96 amino acid residues) is incorporated into the virus particle through a mechanism involving its interaction with the C-terminal portion of Gag. Vpr potentiates virus replication by interrupting cell division in the G2 phase and participates in the nuclear transport of proviral DNA. The domain encompassing the 40 C-terminal residues of Vpr was shown to be involved in cell cycle arrest and binding of nucleocapsid protein NCp7, and suggested to promote nuclear provirus transfer. Accordingly, we show here that the synthetic 52-96 but not 1-51 sequences of Vpr interact with HIV-1 RNA. Based on these results, the structure of (52-96)Vpr was analysed by two-dimensional 1H-NMR in aqueous TFE (30%) solution and refined by restrained molecular dynamics. The structure is characterized by a long (53-78) amphipathic alpha-helix, followed by a less defined (79-96) C-terminal domain. The Leu60 and Leu67 side-chains are located on the hydrophobic side of the helix, suggesting their involvement in Vpr dimerization through a leucine zipper-type mechanism. Accordingly, their replacement by Ala eliminates Vpr dimerization in the two hybrid systems, while mutations of Ile74 and Ile81 have no effect. This was confirmed by gel filtration measurements and circular dichroism, which also showed that the alpha-helix still exists in (52-96)Vpr and its Ala60, Ala67 mutant in the presence and absence of TFE. Based on these results, a model of the coiled-coil Vpr dimer has been described, and its biological relevance as well as that of the structural characteristics of the 52-96 domain for the different functions of Vpr, including HIV-1 RNA binding, are discussed.  相似文献   

8.
Several viral determinants were shown to play a role in the ability of human immunodeficiency virus type 1 (HIV-1) to infect nondividing cells. In particular, Vpr and Gag matrix (MA) were recognized to be involved in the nuclear transport of the viral preintegration complex. The goal of the present study was to evaluate the ability of isogenic HIV-1 viruses harboring different vpr and gag genes to infect nondividing cells. Surprisingly, our results reveal that the introduction of mutations in the MA nuclear localization signal marginally affected the ability of proviruses to establish infection in growth-arrested HeLa or MT4 cells. In contrast, we show that in our experimental system, the absence of Vpr expression leads to a reduction in viral infectivity and production which correlates with a decrease in the synthesis and nuclear transport of proviral DNA as determined by PCR analysis. Moreover, our data demonstrate that this reduction of viral replication is also observed with proviruses containing different mutated Vpr alleles. In particular, the Vpr Q65E mutant, which contains a substitution in the second predicted amphipathic alpha-helical structure located in the central region of the protein, is associated with an impairment of the protein nuclear localization and a concomitant reduction of the nuclear transport of proviral DNA. The results of this study provide evidence that a putative amphipathic alpha-helical structure in the central region of Vpr contains a determinant involved in the nuclear translocation of the preintegration complex in nondividing cells.  相似文献   

9.
HIV-1 viral protein R (Vpr) is predominantly localized to the nucleus and plays an important role for viral preintegration complex import into the nucleus. In this study, we investigated the influence on subcellular localization of Arg residues in the C-terminus of Vpr. Consistent with previous studies, about 90% of the cells manifested diffuse nuclear staining in the Vpr-expressed cells. Besides diffuse nuclear staining, punctate perinuclear staining, and punctate cytoplasmic staining were also observed in the immunofluorescence studies. Deletion of the Ser-Arg-lle-Gly residues (amino acids 79-82; SRIG) had no effect on the Vpr localization. However, deletion of the Arg-Gln-Arg-Arg residues (amino acids 85-88; RQRR) resulted in a smooth perinuclear staining pattern. Substitution of five Arg residues with Asn (amino acids 80, 85, 87, 88, and 90; R-->N5) resulted in a diffuse cytoplasmic staining. Subcellular fractionation analyses support the immunofluorescence staining results. These findings indicate that the C-terminal Arg residues of HIV-1 Vpr play an important role for Vpr nuclear localization. All the Vpr mutants were appropriately expressed, exhibited no significant defect on the protein stability, and were incorporated efficiently into virus-like particles. Both SRIG and R-->N5 mutants lost their cell cycle arrest activities and the RQRR deletion only exhibited a low level of cell arrest activity. Therefore, the Arg residues in the HIV-1 Vpr C-terminus are important for Vpr nuclear localization and cell cycle arrest, but had no effect on protein stability or Vpr incorporation into virus-like particles.  相似文献   

10.
Protein import into the nucleus is generally considered to involve specific nuclear localization signals (NLS) though it is becoming increasingly clear that efficient and well controlled import of proteins which lack a canonical NLS also occurs in cells. Human immunodeficiency virus type 1 (HIV-1) Vpr is one such protein which does not have an identifiable canonical NLS and yet efficiently localizes to the nuclear compartment. Here, we use confocal microscopy to demonstrate that mutations in the putative central hydrophobic helix of Vpr result in the retention of the protein in highly localized ring-like structures around the nuclear periphery with striking impairment in their ability to enter the nuclear interior. By characterizing other biological activities associated with this protein, such as its ability to incorporate into budding virions and its ability to arrest cells in G2, we show that this helical domain is specific for the nuclear translocation of the protein with very little effect on these other functions. Interestingly, however, perturbation of this helical motif also perturbs the protein's ability to augment viral replication in primary human macrophages indicating that the integrity of this secondary structure is essential for optimal infection in these non-dividing cells.  相似文献   

11.
The Vpr protein encoded by human immunodeficiency virus type 1 (HIV-1) is important for growth of virus in macrophages and prevents infected cells from passing into mitosis (G2 arrest). The cellular target for these functions is not known, but Vpr of HIV-1 and the related Vpr from simian immunodeficiency virus of sooty mangabeys (SIV(SM)) bind the DNA repair enzyme UNG, while the Vpx protein of SIV(SM) does not. Nonetheless, a mutational analysis of Vpr showed that binding to UNG is neither necessary nor sufficient for the effect of Vpr on the cell cycle.  相似文献   

12.
13.
14.
Inactivation of progeny virions with chimeric virion-associated proteins represents a novel therapeutic approach against human immunodeficiency virus (HIV) replication. The HIV type 1 (HIV-1) Vpr gene product, which is packaged into virions, is an attractive candidate for such a strategy. In this study, we developed Vpr-based fusion proteins that could be specifically targeted into mature HIV-1 virions to affect their structural organization and/or functional integrity. Two Vpr fusion proteins were constructed by fusing to the first 88 amino acids of HIV-1 Vpr the chloramphenicol acetyltransferase enzyme (VprCAT) or the last 18 C-terminal amino acids of the HIV-1 Vpu protein (VprIE). These Vpr fusion proteins were initially designed to quantify their efficiency of incorporation into HIV-1 virions when produced in cis from the provirus. Subsequently, CD4+ Jurkat T-cell lines constitutively expressing the VprCAT or the VprIE fusion protein were generated with retroviral vectors. Expression of the VprCAT or the VprIE fusion protein in CD4+ Jurkat T cells did not interfere with cellular viability or growth but conferred substantial resistance to HIV replication. The resistance to HIV replication was more pronounced in Jurkat-VprIE cells than in Jurkat-VprCAT cells. Moreover, the antiviral effect mediated by VprIE was dependent on an intact p6(gag) domain, indicating that the impairment of HIV-1 replication required the specific incorporation of Vpr fusion protein into virions. Gene expression, assembly, or release was not affected upon expression of these Vpr fusion proteins. Indeed, the VprIE and VprCAT fusion proteins were shown to affect the infectivity of progeny virus, since HIV virions containing the VprCAT or the VprIE fusion proteins were, respectively, 2 to 3 times and 10 to 30 times less infectious than the wild-type virus. Overall, this study demonstrated the successful transfer of resistance to HIV replication in tissue cultures by use of Vpr-based antiviral genes.  相似文献   

15.
16.
17.
The C-terminal portion of human immunodeficiency virus type 1 p55gag protein, p15gag, contains two functional proteins; p6gag which is required for incorporation of Vpr into the virion, and p7gag which binds to viral RNA and is necessary for packaging of genomic RNA into virions. p7gag protein overexpressed in trans may compete with wild type p55gag for binding to genomic viral RNA, thereby inhibiting incorporation of RNA into the virions. To investigate if overexpression of the C-terminal portion of p55gag could interfere with generation of infectious virus, a plasmid producing a protein consisting of p2gag, p7gag and p6gag, termed p15gag*, was generated and cotransfected with an infectious proviral human immunodeficiency virus type 1 clone. Cells overexpressing p15gag* in trans produced approximately 40 fold less infectious virus than cells lacking exogenous p15gag*. These results demonstrated that expression of the C-terminal portion of p55gag efficiently reduced virus infectivity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号