首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the contribution of phosphocreatine (PCr) and aerobic metabolism during repeated bouts of sprint exercise. Eight male subjects performed two cycle ergometer sprints separated by 4 min of recovery during two separate main trials. Sprint 1 lasted 30 s during both main trials, whereas sprint 2 lasted either 10 or 30 s. Muscle biopsies were obtained at rest, immediately after the first 30-s sprint, after 3.8 min of recovery, and after the second 10- and 30-s sprints. At the end of sprint 1, PCr was 16.9 +/- 1.4% of the resting value, and muscle pH dropped to 6.69 +/- 0.02. After 3.8 min of recovery, muscle pH remained unchanged (6.80 +/- 0.03), but PCr was resynthesized to 78.7 +/- 3.3% of the resting value. PCr during sprint 2 was almost completely utilized in the first 10 s and remained unchanged thereafter. High correlations were found between the percentage of PCr resynthesis and the percentage recovery of power output and pedaling speed during the initial 10 s of sprint 2 (r = 0.84, P < 0.05 and r = 0.91, P < 0.01). The anaerobic ATP turnover, as calculated from changes in ATP, PCr, and lactate, was 235 +/- 9 mmol/kg dry muscle during the first sprint but was decreased to 139 +/- 7 mmol/kg dry muscle during the second 30-s sprint, mainly as a result of a approximately 45% decrease in glycolysis. Despite this approximately 41% reduction in anaerobic energy, the total work done during the second 30-s sprint was reduced by only approximately 18%. This mismatch between anaerobic energy release and power output during sprint 2 was partly compensated for by an increased contribution of aerobic metabolism, as calculated from the increase in oxygen uptake during sprint 2 (2.68 +/- 0.10 vs. 3.17 +/- 0.13 l/min; sprint 1 vs. sprint 2; P < 0.01). These data suggest that aerobic metabolism provides a significant part (approximately 49%) of the energy during the second sprint, whereas PCr availability is important for high power output during the initial 10 s.  相似文献   

2.
The effect of creatine loading on endurance capacity and sprint performance was investigated in elite cyclists according to a double-blind cross-over study design. Subjects (n = 12) underwent on 3 occasions and separated by 5 week wash-out periods, a 2 h 30 min standardized endurance protocol on their own race bicycle, which was mounted on an electromagnetically braked roller-system, whereupon they cycled to exhaustion at their predetermined 4 mmol lactate threshold. Immediately thereafter they performed 5 maximal 10 second sprints, separated by 2 min recovery intervals, on a Monark bicycle ergometer at 6 kg resistance on the flywheel. Before the exercise test, subjects were either creatine loaded (C: 25 g creatine monohydrate/day, 5 days) or were creatine loaded plus ingested creatine during the exercise test (CC: 5 g/h), or received placebo (P). Compared with P, C but not CC increased (p<0.05) peak and mean sprint power output by 8-9% for all 5 sprints. Endurance time to exhaustion was not affected by either C or CC. It is concluded that creatine loading improves intermittent sprint capacity at the end of endurance exercise to fatigue. This ergogenic action is counteracted by high dose creatine intake during exercise.  相似文献   

3.
Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise. The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing.  相似文献   

4.
Our purpose was to examine the effects of sprint interval training on muscle glycolytic and oxidative enzyme activity and exercise performance. Twelve healthy men (22 +/- 2 yr of age) underwent intense interval training on a cycle ergometer for 7 wk. Training consisted of 30-s maximum sprint efforts (Wingate protocol) interspersed by 2-4 min of recovery, performed three times per week. The program began with four intervals with 4 min of recovery per session in week 1 and progressed to 10 intervals with 2.5 min of recovery per session by week 7. Peak power output and total work over repeated maximal 30-s efforts and maximal oxygen consumption (VO2 max) were measured before and after the training program. Needle biopsies were taken from vastus lateralis of nine subjects before and after the program and assayed for the maximal activity of hexokinase, total glycogen phosphorylase, phosphofructokinase, lactate dehydrogenase, citrate synthase, succinate dehydrogenase, malate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase. The training program resulted in significant increases in peak power output, total work over 30 s, and VO2 max. Maximal enzyme activity of hexokinase, phosphofructokinase, citrate synthase, succinate dehydrogenase, and malate dehydrogenase was also significantly (P < 0.05) higher after training. It was concluded that relatively brief but intense sprint training can result in an increase in both glycolytic and oxidative enzyme activity, maximum short-term power output, and VO2 max.  相似文献   

5.
In a double-blind and randomized manner, 18 male and female junior competitive swimmers supplemented their diets with 21 g.day-1 of creatine monohydrate (Cr) or a maltodextrin placebo (P) for 9 days during training. Prior to and following supplementation, subjects performed three 100-m freestyle sprint swims (long course) with 60 s rest/recovery between heats. In addition, subjects performed three 20-s arm ergometer maximal-effort sprint tests in the prone position with 60 s rest/recovery between sprint tests. Significant differences were observed among swim times, with Cr subjects swimming significantly faster than P subjects following supplementation in Heat 1 and significantly decreasing swim time in the second 100-m sprint. There was also some evidence that cumulative time to perform the three 100-m swims was decreased in the Cr group. Results indicate that 9 days of Cr supplementation during swim training may provide some ergogenic value to competitive junior swimmers during repetitive sprint performance.  相似文献   

6.
Five trained men were studied during 2 h of cycling exercise at 67% peak oxygen uptake at 20-22 degrees C to examine the effect of fluid ingestion on muscle metabolism. On one occasion, the subjects completed this exercise without fluid ingestion (NF) while on the other they ingested a volume of distilled deionized water that prevented loss of body mass (FR). No differences in oxygen uptake during exercise were observed between the two trials. Heart rate was lower (P < 0.01) throughout exercise when fluid was ingested, and rectal temperature after 2 h of exercise was lower (38.0 +/- 0.2 and 38.6 +/- 0.2 degrees C for FR and NF, respectively; P < 0.01), as was muscle (vastus lateralis) temperature (38.5 +/- 0.4 and 39.1 +/- 0.5 degrees C for FR and NF, respectively; P < 0.05). Resting muscle ATP, creatine phosphate, creatine, glycogen, and lactate levels were similar in the two trials, as were the postexercise ATP, creatine phosphate, and creatine levels. In contrast, muscle glycogen was higher (P < 0.05) and muscle lactate was lower (P < 0.05) after 2 h of exercise in FR compared with NF. Net muscle glycogen utilization during exercise was reduced by 16% when fluid was ingested (318 +/- 46 and 380 +/- 53 mmol/kg dry weight for FR and NF, respectively; P < 0.05). These results indicate that fluid ingestion reduces muscle glycogen use during prolonged exercise, which may account, in part, for the improved performance previously observed with fluid ingestion.  相似文献   

7.
The purpose of this study was to develop a standardised maximal treadmill exercise test performed until fatigue in order to find reproducible markers for anaerobic metabolism, specifically adenine nucleotide degradation. Six Standardbred trotters performed an incremental maximal treadmill exercise test in 1 min steps (starting with 7 m/s) until they could no longer keep pace with the treadmill. The test was performed twice with at least one week between the tests. Heart rate was recorded and venous blood samples were obtained during the test and in the recovery period for determination of plasma lactate, hypoxanthine, xanthine and uric acid. Muscle biopsy samples (m. gluteus) were collected at rest, immediately post exercise, and after 15 min recovery and analysed for their concentrations of glycogen, creatine phosphate (CP), adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), inosine monophosphate (IMP) and muscle lactate (MLa). Significant decreases in glycogen, CP and ATP and significant increases in IMP and MLa were seen immediately post exercise. None of these metabolites had returned to resting levels after 15 min of recovery. A marked increase in plasma lactate (PLa) occurred during exercise and the peak concentration (mean value = 27.2 mmol/l) was reached within 5 min of recovery. Plasma uric acid concentration did not increase during exercise but rose markedly immediately post exercise, reaching the highest level (mean value = 121.5 micromol/l) at 20-30 min recovery. The duration of the maximal test was related to peak PLa and the uric acid concentration at 30 min of recovery. A correlation was also found between the ATP and IMP concentrations immediately post exercise and the plasma uric acid concentration at 30 min of recovery. The results show that this treadmill test triggered anaerobic metabolism and also that uric acid concentration post exercise seems to be a marker for the adenine nucleotide degradation that occurs during intense exercise. No significant differences were seen in metabolic response between the 2 test occasions.  相似文献   

8.
PURPOSE: To determine the effects of 28 d of creatine supplementation during training on body composition, strength, sprint performance, and hematological profiles. METHODS: In a double-blind and randomized manner, 25 NCAA division IA football players were matched-paired and assigned to supplement their diet for 28 d during resistance/agility training (8 h x wk[-1]) with a Phosphagen HP (Experimental and Applied Sciences, Golden, CO) placebo (P) containing 99 g x d(-1) of glucose, 3 g x d(-1) of taurine, 1.1 g x d(-1) of disodium phosphate, and 1.2 g x d(-1) of potassium phosphate (P) or Phosphagen HP containing the P with 15.75 g x d(-1) of HPCE pure creatine monohydrate (HP). Before and after supplementation, fasting blood samples were obtained; total body weight, total body water, and body composition were determined; subjects performed a maximal repetition test on the isotonic bench press, squat, and power clean; and subjects performed a cycle ergometer sprint test (12 x 6-s sprints with 30-s rest recovery). RESULTS: Hematological parameters remained within normal clinical limits for active individuals with no side effects reported. Total body weight significantly increased (P < 0.05) in the HP group (P 0.85 +/- 2.2; HP 2.42 +/- 1.4 kg) while no differences were observed in the percentage of total body water. DEXA scanned body mass (P 0.77 +/- 1.8; HP 2.22 +/- 1.5 kg) and fat/bone-free mass (P 1.33 +/- 1.1; HP 2.43 +/- 1.4 kg) were significantly increased in the HP group. Gains in bench press lifting volume (P -5 +/- 134; HP 225 +/- 246 kg), the sum of bench press, squat, and power clean lifting volume (P 1,105 +/- 429; HP 1,558 +/- 645 kg), and total work performed during the first five 6-s sprints was significantly greater in the HP group. CONCLUSION: The addition of creatine to the glucose/taurine/electrolyte supplement promoted greater gains in fat/bone-free mass, isotonic lifting volume, and sprint performance during intense resistance/agility training.  相似文献   

9.
The purpose of this study was to examine the effects of a heavy-resistance exercise protocol known to dramatically elevate immunoreactive growth hormone (GH) on circulating insulin-like growth factor I (IGF-I) after the exercise stimulus. Seven men (23.1 +/- 2.4 yr) volunteered to participate in this study. Each subject was asked to perform an eight-station heavy-resistance exercise protocol consisting of 3 sets of 10 repetition maximum resistances with 1-min rest between sets and exercises followed by a recovery day. In addition, a control day followed a nonexercise day to provide baseline data. Pre- and postexercise (0, 15, and 30 min) blood samples were obtained and analyzed for lactate, creatinine kinase, GH, and IGF-I. Postexercise values for lactate and GH were significantly (P < 0.05) elevated above preexercise and resting baseline values. The highest mean GH concentration after the heavy-resistance exercise protocol was 23.8 +/- 11.8 micrograms/l, observed at the immediate postexercise time point. Significant increases in creatine kinase were observed after the exercise protocol and during the recovery day. No significant relationships were observed between creatine kinase and IGF-I concentrations. No significant changes in serum IGF-I concentrations were observed with acute exercise or between the recovery and control days. Thus, these data demonstrate that a high-intensity bout of heavy-resistance exercise that increases circulating GH did not appear to affect IGF-I concentrations over a 24-h recovery period in recreationally strength-trained and healthy young men.  相似文献   

10.
OBJECTIVE: To review and summarize the current data on oral creatine supplementation regarding its potential efficacy in athletic performance, mechanism of action, and metabolism. DATA SOURCES AND STUDY SELECTION: Medline was searched using terms relating creatine supplementation to athletic performance. Studies that evaluated the effects of oral creatine supplementation on exercise performance in humans were selected for inclusion. Selected studies on muscle metabolism and exercise physiology were included if they provided useful information relative to creatine. Additional references were reviewed from the bibliographies of selected studies. DATA EXTRACTION AND SYNTHESIS: To summarize efficacy, extracted data were listed in table format, grouping studies together by type of activity and efficacy on performance. Whenever possible, the effect of creatine supplementation was quantified. Proposed explanations for creatine's efficacy or lack thereof in a particular type of activity were formulated. CONCLUSIONS: In laboratory settings, creatine supplementation is ergogenic in repeated 6-30-second bouts of maxima stationary cycling sprints. The data on a single sprint or first-bout sprint of any kind are inconsistent. The data regarding creatine's ergogenic effects on mass-dependent activities, such as running and swimming, are not convincing, perhaps because of the side effect of weight gain from water retention. Studies on weight lifting suggest that creatine improves strength possibly by increasing myofibrillar protein synthesis however, more study is needed to prove this. No ergogenic effects on submaximal or endurance exercise are evident Individual response to creatine supplementation can vary greatly.  相似文献   

11.
The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD was observed, but after the 7th week of training there was an increase in GPX from 120 +/- 12 (SE) to 164 +/- 24 mumol.min-1.g dry wt-1 (P < 0.05) and in GR from 10.8 +/- 0.8 to 16.8 +/- 2.4 mumol.min-1.g dry wt-1 (P < 0.05). There was no significant change in SOD. Sprint cycle training induced a significant (P < 0.05) elevation in the activity of phosphofructokinase and creatine kinase, implying an enhanced anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves the level of antioxidant protection in the muscle.  相似文献   

12.
The effect of propionyl L-carnitine on skeletal muscle metabolism in chronic renal failure. Carnitine deficiency, resulting in defective oxidative ATP synthesis, has been implicated in the myopathy of chronic renal failure. Using 31P magnetic resonance spectroscopy we examined calf muscle metabolism in 10 dialysed patients before and after 8 weeks of propionyl L-carnitine (PLC) 2 g.p.o. daily. Resting phosphocreatine/ATP (4.41 +/- 0.20 [SEM]) decreased to normal control levels on PLC (3.98 +/- 0.14; controls 4.00 +/- 0.06). In contrast, there was no effect of PLC on aerobic and anaerobic metabolism of muscle during or following 2-10 min exercise. The maximal calculated oxidative capacity (Qmax) remained below normal (28 +/- 3 mM/min before and 24 +/- 3 mM/min after PLC; controls 49 +/- 3 mM/min). Qmax correlated positively with hemoglobin concentration ([Hb]) after PLC (p < 0.03). Oxidative capacity assessed by phosphocreatine recovery T significantly improved with PLC administration (0.93 +/- 0.1 to 0.74 +/- 0.08 min) in those patients (n = 6) with [Hb] > 10 g/dl. [Hb] was rate limiting to oxidative metabolism in recovery from exercise but only following treatment with PLC. Patients with anemia or those subjects who use relatively more non-oxidatively synthesized ATP during exercise, do not respond to PLC. Oxidative metabolism did not normalize on PLC suggesting that anemia and carnitine deficiency are not the only causes of mitochondrial dysfunction in renal failure.  相似文献   

13.
This study aimed to compare the effects of oral creatine (Cr) supplementation with creatine supplementation in combination with caffeine (Cr+C) on muscle phosphocreatine (PCr) level and performance in healthy male volunteers (n = 9). Before and after 6 days of placebo, Cr (0.5 g x kg-1 x day-1), or Cr (0.5 g x kg-1 x day-1) + C (5 mg x kg-1 x day-1) supplementation, 31P-nuclear magnetic resonance spectroscopy of the gastrocnemius muscle and a maximal intermittent exercise fatigue test of the knee extensors on an isokinetic dynamometer were performed. The exercise consisted of three consecutive maximal isometric contractions and three interval series of 90, 80, and 50 maximal voluntary contractions performed with a rest interval of 2 min between the series. Muscle ATP concentration remained constant over the three experimental conditions. Cr and Cr+C increased (P < 0.05) muscle PCr concentration by 4-6%. Dynamic torque production, however, was increased by 10-23% (P < 0.05) by Cr but was not changed by Cr+C. Torque improvement during Cr was most prominent immediately after the 2-min rest between the exercise bouts. The data show that Cr supplementation elevates muscle PCr concentration and markedly improves performance during intense intermittent exercise. This ergogenic effect, however, is completely eliminated by caffeine intake.  相似文献   

14.
The study was designed to investigate the effect of creatine monohydrate ingestion (20 g daily for 5 days) on performance in 45 s maximal continuous jumping and in all-out treadmill running at 20 km x h(-1), (inclination 5 degrees, duration approximately 60s). The participants were qualified sprinters and jumpers. The effect of creatine was compared with placebo in a double-blind design. Creatine (Cr) supplementation led to a significant enhancement of performance capacity in the jumping test by 7% during the first 15 s and by 12% during the second 15 s of the exercise. The positive effect of Cr supplementation was not observed in the last third of the continuous jumping exercise, when the contribution of anaerobic metabolism was decreasing. The time of intensive running up to exhaustion improved by 13%. The results show that Cr supplementation helps to prolong the time during which the maximal rate of power output could be maintained.  相似文献   

15.
OBJECTIVE: This study was undertaken to investigate the influence of oral supplementation with creatine monohydrate on muscular performance during repeated sets of high-intensity resistance exercise. SUBJECTS/DESIGN: Fourteen active men were randomly assigned in a double-blind fashion to either a creatine group (n = 7) or a placebo group (n = 7). Both groups performed a bench press exercise protocol (5 sets to failure using each subject's predetermined 10-repetition maximum) and a jump squat exercise protocol (5 sets of 10 repetitions using 30% of each subject's 1-repetition maximum squat) on three different occasions (T1, T2, and T3) separated by 6 days. INTERVENTION: Before T1, both groups received no supplementation. From T1 to T2, both groups ingested placebo capsules. From T2 to T3, the creatine group ingested 25 g creatine monohydrate per day, and the placebo group ingested an equivalent amount of placebo. MAIN OUTCOME MEASURES: Total repetitions for each set of bench presses and peak power output for each set of jump squats were determined. Other measures included assessment of diet, body mass, skinfold thickness, and preexercise and 5-minute postexercise lactate concentrations. RESULTS: Lifting performance was not altered for either exercise protocol after ingestion of the placebos. Creatine supplementation resulted in a significant improvement in peak power output during all 5 sets of jump squats and a significant improvement in repetitions during all 5 sets of bench presses. After creatine supplementation, postexercise lactate concentrations were significantly higher after the bench press but not the jump squat. A significant increase in body mass of 1.4 kg (range = 0.0 to 2.7 kg) was observed after creatine ingestion. CONCLUSION: One week of creatine supplementation (25 g/day) enhances muscular performance during repeated sets of bench press and jump squat exercise.  相似文献   

16.
Investigations examining the ergogenic and metabolic influence of caffeine during short-term high-intensity exercise are few in number and have produced inconsistent results. This study examined the effects of caffeine on repeated bouts of high-intensity exercise in recreationally active men. Subjects (n = 9) completed four 30-s Wingate (WG) sprints with 4 min of rest between each exercise bout on two separate occasions. One hour before exercise, either placebo (P1; dextrose) or caffeine (Caf; 6 mg/kg) capsules were ingested. Caf ingestion did not have any effect on power output (peak or average) in the first two WG tests and had a negative effect in the latter two exercise bouts. Plasma epinephrine concentration was significantly increased 60 min after Caf ingestion compared with P1; however, this treatment effect disappeared once exercise began. Caf ingestion had no significant effect on blood lactate, O2 consumption, or aerobic contribution at any time during the protocol. After the second Wingate test, plasma NH3 concentration increased significantly from the previous WG test and was significantly higher in the Caf trial compared with P1. These data demonstrate no ergogenic effect of caffeine on power output during repeated bouts of short-term, intense exercise. Furthermore, there was no indication of increased anaerobic metabolism after Caf ingestion with the exception of an increase in NH3 concentration.  相似文献   

17.
To investigate the "rapid-adaptation" phenomenon, we examined force, neural, and morphological adaptations in 12 subjects who performed 100 eccentric contractions with the quadriceps muscle (bout 1) and repeated the same exercise after a 2-wk hiatus (bout 2). Two days after bout 1, quadriceps muscle strength and surface electromyographic (EMG) activity declined approximately 37 and 28%, respectively, in the control group (n = 6). At day 2 after bout 1, significant increases occurred in patellar tendon reflex amplitude (approximately 25%), muscle soreness (fivefold), and serum creatine kinase (220%), and 65 +/- 12% of the total number of pixels in the EMG indicated myofibrillar disruption. At day 7 after bout 1, all variables returned to normal. At day 2 after bout 2, no significant changes occurred in force, EMG, creatine kinase, or soreness, but reflex amplitude increased, and 23 +/- 4% of the total number of pixels in the EMG still indicated myofibrillar disruption. The results suggest that the rapid force recovery following eccentric exercise is mediated at least in part by neural factors and that this recovery may occur independently of cell disruption.  相似文献   

18.
Mitochondrial function in muscle in vivo can be quantitatively evaluated using 31-phosphorus nuclear magnetic resonance. In resting muscle, the concentrations of ions (e.g. H+, Na+) and two of the major bioenergetic components (inorganic phosphate and creatine) are determined by regulated transcellular transport processes. During recovery after exercise the kinetics and control of mitochondrial ATP synthesis can be established. During exercise the relative contributions to ATP synthesis of phosphocreatine (using creatine kinase), anaerobic glycogenolysis and oxidative phosphorylation are dissected and have been shown to change with time. The consequences of mitochondrial lesions and dysfunctions on these processes have been summarised.  相似文献   

19.
BACKGROUND: We studied the local relation of muscle perfusion and metabolism in patients with severe chronic heart failure. Alterations of skeletal muscle blood flow and oxidative capacity contribute to exercise intolerance in these patients. The interdependence of both parameters has often been questioned. METHODS AND RESULTS: With the use of nuclear magnetic resonance, we quantified leg and muscle perfusion during reactive hyperemia in 7 patients with heart failure (New York Heart Association class III and IV) and 7 age-matched control subjects from the difference in longitudinal relaxation rate (1/T1). By using 31P nuclear magnetic resonance spectroscopy, we assessed oxidative metabolism from the creatine rephosphorylation time constant after a short ischemic exercise. Phosphocreatine recovery is slowed (74.6 +/- 11.3 vs 49.9 +/- 13.9 seconds, p = .002) and reactive hyperemic flow is reduced (48.5 +/- 24.9 vs 113 +/- 30.4 mL/100 mL per minute, p = .0005). CONCLUSIONS: By using a totally noninvasive protocol, we demonstrated that reactive hyperemic flow correlates with oxidative capacity in calf muscles from patients with heart failure, showing that exercise performance and local circulatory dysfunction are decreased in parallel in severe heart failure.  相似文献   

20.
During eccentrically biased exercise (e.g., downhill locomotion), whole body oxygen consumption and blood lactate concentrations are lower than during level locomotion. These general systemic measurements indicate that muscle metabolism is lower during downhill exercise. This study was designed to test the hypothesis that hindlimb muscle blood flow is correspondingly lower during downhill vs. level exercise. Muscle blood flow (determined by using radioactive microspheres) was measured in rats after 15 min of treadmill exercise at 15 m/min on the level (L, 0 degrees) or downhill (D, -17 degrees). Blood flow to ankle extensor muscles was either lower (e.g., white gastrocnemius muscle: D, 9 +/- 2; L, 15 +/- 1 ml. min-1. 100 g-1) or not different (e.g., soleus muscle: D, 250 +/- 35; L, 230 +/- 21 ml. min-1. 100 g-1) in downhill vs. level exercise. In contrast, blood flow to ankle flexor muscles was higher (e.g., extensor digitorum longus muscle: D, 53 +/- 5; L, 31 +/- 6 ml. min-1. 100 g-1) during downhill vs. level exercise. When individual extensor and flexor muscle flows were summed, total flow to the leg was lower during downhill exercise (D, 3.24 +/- 0.08; L, 3.47 +/- 0. 05 ml/min). These data indicate that muscle blood flow and metabolism are lower during eccentrically biased exercise but are not uniformly reduced in all active muscles; i.e., flows are equivalent in several ankle extensor muscles and higher in ankle flexor muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号