首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modified Direct Shear Test for Anisotropic Strength of Sand   总被引:1,自引:0,他引:1  
This paper presents a simple method to estimate the directional dependency of granular soil strength using a modified shear box and a special specimen preparation procedure. This method is used to investigate the strength anisotropy of granular materials with particle shapes varying from spherical to angular. The experimental results show that the friction angle of granular materials varies with the orientation of shear plane relative to the bedding plane, and the degree of anisotropy is affected by particle shape. Comparison of the data from direct shear tests in this study with those of plane strain and torsional simple shear tests in the literature shows that direct shear using the modified direct shear box can reasonably capture the directional dependency of the friction angle for cohesionless materials.  相似文献   

2.
Dredging operations in European harbors for maintenance of navigable water depth produce vast amounts of harbor mud. Between 2005 and 2007, the second largest harbor construction project in Germany was designed as a pilot study to use dredged harbor mud as backfill material to avoid expensive disposal or ex situ treatment. During this project, a partial collapse of the backfill highlighted the need for an improved assessment of undrained shear strength of naturally occurring liquid harbor mud. Using vane shear testing, this study evaluates the effect of shear rate on the undrained shear strength of harbor mud. It is shown that measured values for both peak and residual shear strength are significantly influenced by shear rate effects. Furthermore, the influence of shear rate on the peak shear strength is found to be independent of water content while the influence of the shear rate on the residual shear strength strongly depends on water content. New shear rate dependent correction factors μ are proposed using the test results and the observed time to failure in the harbor basin. The proposed correction leads to significant lower design undrained shear strengths than the classical Bjerrum correction and would have predicted the failure during the construction.  相似文献   

3.
The results of drained triaxial tests on fiber reinforced and nonreinforced sand (Osorio sand) specimens are presented in this work, considering effective stresses varying from 20 to 680?kPa and a variety of stress paths. The tests on nonreinforced samples yielded effective strength envelopes that were approximately linear and defined by a friction angle of 32.5° for the Osorio sand, with a cohesion intercept of zero. The failure envelope for sand when reinforced with fibers was distinctly nonlinear, with a well-defined kink point, so that it could be approximated by a bilinear envelope. The failure envelope of the fiber-reinforced sand was found to be independent of the stress path followed by the triaxial tests. The strength parameters for the lower-pressure part of the failure envelope, where failure is governed by both fiber stretching and slippage, were, respectively, a cohesion intercept of about 15?kPa and friction angle of 48.6?deg. The higher-pressure part of the failure envelope, governed by tensile yielding or stretching of the fibers, had a cohesion intercept of 124?kPa, and friction angle of 34.6?deg. No fiber breakage was measured and only fiber extension was observed. It is, therefore, believed that the fibers did not break because they are highly extensible, with a fiber strain at failure of 80%, and the necessary strain to cause fiber breakage was not reached under triaxial conditions at these stress and strain levels.  相似文献   

4.
Ring shear tests were conducted on five samples of different nature with a modified Imperial College type ring shear machine. The three different testing methods used, (1) individual sample testing for each normal stress, (2) increasing load multistage ring shear test, and (3) reducing load multistage ring shear test, all showed similar effective residual internal friction angle for the samples, irrespective of testing method. However, effective residual shear intercept was different according to the testing methodology. The internal friction angle did not vary, particularly after the first minimum point in the stress displacement curve, although the residual shear intercept decreased with increase in the displacement. The thickness of the shearing zone increased along with the displacement. The remolded peak shear strength for saturated conditions at field dry density varied with the consolidation history. Measurement of remolded peak shear strength was possible in a single sample using the increasing load multistage ring shear test at normal consolidation. The equilibrium water content of the sample after the ring shear test was nearly equal to the plastic limit.  相似文献   

5.
Shear Strength in Preexisting Landslides   总被引:1,自引:0,他引:1  
Drained residual shear strength is used for the analysis of slopes containing preexisting shear surfaces. Some recent research suggests that preexisting shear surfaces in prior landslides can gain strength with time. Torsional ring and direct shear tests performed during this study show that the recovered shear strength measured in the laboratory is only noticeably greater than the drained residual strength at effective normal stress of 100 kPa or less. The test results also show that the recovered strength even at effective normal stresses of 100 kPa or less is lost after a small shear displacement, i.e., slope movement. An effective normal stress of 100 kPa corresponds to a shallow depth so the observed strength gain has little, if any, impact on the analysis of deep landslides. This paper describes the laboratory strength recovery testing and the results for soils with different plasticities at various rest periods and effective normal stresses.  相似文献   

6.
The concept that plasticity index of soils can be defined as a range of water contents producing a 100-fold variation in undrained shear strength has been experimentally verified with the help of a large number of tests on soils of diverse nature. This has led to the redefinition of the plastic limit as the water content at which undrained shear strength is around 170 kN/m2. Undrained shear strength of a soil at the liquid limit can be considered to be around 1.7 kN/m2. Accordingly, both the liquid limit and the plastic limit have been determined in the present work by a single consistent method, i.e., the Swedish fall cone method. The undrained shear strength-water content relationship has been found to be log-linear for a wide range of water contents beginning from lower than the plastic limit to higher than the liquid limit. This resulted in the formulation of an expression for predicting undrained shear strength of a remolded soil at any water content based solely on its liquid limit and plastic limit.  相似文献   

7.
Undrained Shear Strength of Pleistocene Clay in Osaka Bay   总被引:1,自引:0,他引:1  
This study presents the undrained shear characteristics of Holocene and Pleistocene clay samples from depths of 20–200 m under the seabed in Osaka Bay. Automated triaxial K0 consolidation tests and anisotropically consolidated-undrained triaxial compression and extension tests are conducted using the recompression method. The average undrained strength ratio (su/σv0′) is 0.33 (SD = 0.03) when the extension strength is defined as the peak strength or the strength at an axial strain of 15%, while su/σv0′ is 0.29 (SD = 0.04) when the extension strength is defined as the shear stress at the axial strain corresponding to the peak compression strength. Circular arc stability analyses are carried out with the modified Fellenius and Bishop methods for the design cross section of the seawall structure of the Kansai International Airport to study the effects of different definitions of shear strength. The seawall is founded on 19 m of soft Holocene clay and 10 m of Pleistocene sand overlying the Pleistocene clay. The stability analyses show that the factor of safety and depth of the critical circle (i.e., above versus below the sand layer) are sharply affected by both the value of su/σv0′ (0.33 versus 0.29) and the method of slices (Fellenius versus Bishop). The marginal stability calls for careful monitoring of construction with field instrumentation.  相似文献   

8.
The mechanism controlling the cyclic shear strength of cemented calcareous soils was investigated based on the results obtained from monotonic and cyclic triaxial tests on two different types of calcareous soil. Undrained cyclic triaxial tests performed on artificially cemented calcareous soils with different loading combinations showed that the effective stress path moved towards or away from the origin, due to the generation or dissipation of pore pressure with progressive cycles. Previous investigations have shown that the Peak Strength Envelope or the State Boundary Surface or the Critical State Line forms a boundary beyond which effective stress paths during cyclic loading cannot exist. However, in this study it was observed that the maximum stress ratio (ηmax) obtained from monotonic tests defined the boundary for the cyclic tests. Based on the information obtained from this study, an approach for evaluating the cyclic shear strength is proposed. It was observed that the modified normalized cyclic shear strength had a strong linear relationship with the logarithm of the number of cyclic to failure irrespective of confining pressure, type of consolidation and stress reversal.  相似文献   

9.
The objective of this study was to characterize relative changes in waste shear strength parameters during waste decomposition. Twelve direct shear tests (100?mm diameter by 50?mm thickness) were performed on waste specimens ranging from fresh to well-decomposed residential refuse. In addition, nine direct shear tests were performed on selected waste components including fresh paper, partially decomposed refuse, and plastics. Results indicate that the friction angle of refuse decreased with decomposition. As refuse decomposed, the plastic content increased, which contributed to a decrease in friction angle as the friction angle of plastics is 18–19° as compared to 33° for fresh shredded waste. The extent of refuse decomposition was characterized by the cellulose plus hemicellulose to lignin ratio [(C+H)/L]. The measured friction angle decreased from 32 to 24° as (C+H)/L decreased from 1.29 to 0.25. The shearing pattern for decomposed refuse showed a peak, followed by residual, which was then followed by a steady increase in shear stresses with displacement; the final rate of increase was similar to that observed in fresh paper specimens. Results from this work were comparable to data from previous reports, though it is important to characterize the extent of solids decomposition for a valid comparison with published studies.  相似文献   

10.
Shear Strength of Municipal Solid Waste   总被引:5,自引:0,他引:5  
A comprehensive large-scale laboratory testing program using direct shear (DS), triaxial (TX), and simple shear tests was performed on municipal solid waste (MSW) retrieved from a landfill in the San Francisco Bay area to develop insights about and a framework for interpretation of the shear strength of MSW. Stability analyses of MSW landfills require characterization of the shear strength of MSW. Although MSW is variable and a difficult material to test, its shear strength can be evaluated rationally to develop reasonable estimates. The effects of waste composition, fibrous particle orientation, confining stress, rate of loading, stress path, stress-strain compatibility, and unit weight on the shear strength of MSW were evaluated in the testing program described herein. The results of this testing program indicate that the DS test is appropriate to evaluate the shear strength of MSW along its weakest orientation (i.e., on a plane parallel to the preferred orientation of the larger fibrous particles within MSW). These laboratory results and the results of more than 100 large-scale laboratory tests from other studies indicate that the DS static shear strength of MSW is best characterized by a cohesion of 15?kPa and a friction angle of 36° at normal stress of 1?atm with the friction angle decreasing by 5° for every log cycle increase in normal stress. Other shearing modes that engage the fibrous materials within MSW (e.g., TX) produce higher friction angles. The dynamic shear strength of MSW can be estimated conservatively to be 20% greater than its static strength. These recommendations are based on tests of MSW with a moisture content below its field capacity; therefore, cyclic degradation due to pore pressure generation has not been considered in its development.  相似文献   

11.
Shear Strength of Fiber-Reinforced Sands   总被引:3,自引:0,他引:3  
Soil reinforcement using discrete randomly distributed fibers has been widely investigated over the last 30 years. Several models were suggested to estimate the improvement brought by fibers to the shear strength of soils. The objectives of this paper are to (1) supplement the data available in the literature on the behavior of fiber-reinforced sands; (2) study the effect of several parameters which are known to affect the shear strength of fiber-reinforced sands; and (3) investigate the effectiveness of current models in predicting the improvement in shear strength of fiber-reinforced sand. An extensive direct shear testing program was implemented using coarse and fine sands tested with three types of fibers. Results indicate the existence of a fiber-grain scale effect which is not catered for in current prediction models. A comparison between measured and predicted shear strengths indicates that the energy dissipation model is effective in predicting the shear strength of fiber-reinforced specimens in reference to the tests conducted in this study. On the other hand, the effectiveness of the predictions of the discrete model is affected by the parameters of the model, which may depend on the test setup and the procedure used for mixing the fibers.  相似文献   

12.
The purpose of this study was to determine the physical and chemical properties of tire shreds for use in engineering construction as a replacement for aggregates in embankments or as backfill. In general, test results revealed that tire shreds can be utilized in construction applications. As the size of tire shreds increases, physical properties such as specific gravity remained constant at 1.06–1.1. Gradation of tire shreds was also tested, and the results were comparable to other researchers (i.e., ranging from 50 to 300 mm). As the tire shred size increased, the hydraulic conductivity increased from 0.2 to 0.85 cm/s. Increasing the compaction energy had little effect on the final compaction density. The angle of friction and cohesion ranged from 15 to 32° and 349 to 394?N/m2, respectively. As the particle size (from 50 to 300 mm) of the tire shreds increased, the shear strength of the scrap tire increased. Moreover, as the tire shred size increased, compressibility increased. Chemical analysis of tire shreds was conducted to illustrate how properties such as total organic carbon (TOC), pH, and turbidity change with tire size. As tire shred size increases, the results illustrated a decrease in TOC (from 22.7 to 3.1 ppm) and turbidity (from 254 to 99 NTU). Continuous flow column tests were conducted on tire shreds and showed improved water quality (TOC, turbidity, and iron) with time. However, pause flow column tests showed reduced water quality, which implies that placement of a tire embankment below the water table where ponding can occur may reduced water quality. TGA tests were also conducted to determine the thermal stability of tire shreds. In general, tire shreds are stable up to temperatures of 200°C. This indicates that other mechanisms may be attributed to the exothermic reactions, which occurred in tire fills.  相似文献   

13.
14.
Full-flow penetrometers (the T-bar and ball) are increasingly used on sites with thick deposits of soft clays, particularly prevalent offshore. Full-flow penetration tests were performed at five international well-characterized soft clay test sites to assess the use of full-flow penetrometers to estimate undrained shear strength. Field vane shear data were used as the reference undrained strength. Statistical analyses of strength factors indicates that full-flow penetrometers provide an estimate of undrained shear strength at a similar level of reliability compared to the piezocone. Relationships for estimating the strength factor and soil sensitivity using only full-flow penetrometer data obtained during initial penetration and extraction are developed. A strong dependence of the strength factor on sensitivity was identified and can be used for the estimation of undrained strength. The effectiveness and use of the developed correlations are demonstrated through their application at an additional test site.  相似文献   

15.
Shear keys are used in bridge abutments to provide transverse support for the superstructure. The damage observed on bridge abutments in the aftermath of the 1994 Northridge Earthquake prompted the revision of the design of shear keys. As part of this revision, experimental and analytical work was conducted to investigate the seismic behavior of exterior shear keys in bridge abutments designed in accordance with current guidelines and to investigate shear keys designed for damage control. The latter work was aimed at providing guidance for seismic design of shear keys to act as structural fuses that would limit the input force in the abutment piles. Ten shear keys were designed and built at 1:2.5 scale of a prototype abutment design provided by Caltrans. The study concluded that a smooth construction joint should be considered at the interface of the shear key–abutment stem wall to allow sliding shear failure. A mechanism model was developed for capacity evaluation of shear keys with sliding shear failure. The results of the experimental program and development of the simple analytical model for capacity evaluation of exterior shear keys are presented in this paper.  相似文献   

16.
This paper examines immediate and time-dependent compression of tire derived aggregate (TDA) and TDA-soil composites. To accommodate large particle sizes, modified experimental devices were developed and used to test tire chips and tire shreds. Immediate compression of TDA, which results almost entirely from the reduction of pore volume, increases with TDA content and tire particle size. The secant constrained modulus (Msec) of TDA defined over the stress range of 0–50?kPa varied from a low of 255?kPa (100% tire shreds) to a high of 1,320?kPa (50% tire chips). A characteristic relationship between strain and time exists for TDA and TDA composites under one-dimensional confined compression. Time-dependent deformation is well described by the modified secondary compression index (Cαε), which ranged from 0.0010 (50% tire chips) to 0.0074 (100% tire chips). Time-dependent deformation was inversely proportional to sand content, with the most significant changes resulting from the addition of 15% sand. Both applied stress and tire particle size appear to have a negligible effect on time-dependent compression of TDA. Based on the findings of this study it is recommended that practitioners assess time-dependent settlement when designing a TDA structure and if necessary incorporate design features to accommodate these settlements.  相似文献   

17.
This paper presents an experimental study of the strength in anisotropic clays by means of centrifuge model, cone penetration, and vane shear tests. To understand the effects of void ratio, overconsolidation ratio, and testing rate on the undrained shear strength (Su) of anisotropic Speswhite clay, a new centrifugal testing technique is designed to obtain constant overconsolidation ratio (OCR) profiles with varying void ratios (e), called the “descending gravity test.” The parameters controlling the generation of peak shear strength are quantified. As a result of this function, a new material and rate-dependent surface is defined in the e-OCR-Su space, which is identified as a “structural state capacity surface” since it relates the anisotropic structure to structure inherent capacity and properties. A new function for the estimation of excess pore pressure (uex) generated by cone penetration is found. By combining the strength and pore pressure functions a new model is proposed, called the “CU model.” The CU model is a structure-based model that provides reliable estimates of shear strength for in situ saturated clays using the knowledge of void and overconsolidation ratios. Finally, by combining Su-e-OCR and uex-e-OCR relationships, it estimates the void ratio and OCR profiles of anisotropic clays from piezocone penetration test results.  相似文献   

18.
Increasing interest in the use of fiber-reinforced polymer (FRP) reinforcement for reinforced concrete structures has made it clear that insufficient information about the shear performance of such members is currently available to practicing engineers. This paper summarizes the results of 11 large shear tests of reinforced concrete beams with glass FRP (GFRP) longitudinal reinforcement and with or without GFRP stirrups. Test variables were the member depth, the member flexural reinforcement ratio, and the amount of shear reinforcement provided. Results showed that the equations of the Canadian CSA shear provisions provide conservative estimates of the shear strength of FRP-reinforced members. Recommendations are given along with a worked example on how to apply these provisions including to members with FRP stirrups. It was found that members with multiple layers of longitudinal bars appear to perform better than those with a single layer of longitudinal reinforcing bars. Overall, it was concluded that the fundamental shear behavior of FRP-reinforced beams is similar to that of steel-reinforced beams despite the brittle nature of the reinforcement.  相似文献   

19.
A series of undrained tests were performed on granular soils consisting of sand and gravel with different particle gradations and different relative densities reconstituted in laboratory. Despite large differences in grading, only a small difference was observed in undrained cyclic shear strength or liquefaction strength defined as the cyclic stress causing 5% double amplitude axial strain for specimens having the same relative density. In a good contrast, undrained monotonic shear strength defined at larger strains after undrained cyclic loading was at least eight times larger for well-graded soils than poorly graded sand despite the same relative density. This indicates that devastating failures with large postliquefaction soil strain are less likely to develop in well-graded granular soils compared to poorly graded sands with the same relative density, although they are almost equally liquefiable. However, if gravelly particles of well-graded materials are crushable such as decomposed granite soils, undrained monotonic strengths are considerably small and almost identical to or lower than that of poorly graded sands.  相似文献   

20.
Shear strength parameters used in geotechnical design are obtained mainly from the consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However in many field situations, soils are compacted for construction purposes and may not follow the stress paths in CD or CU triaxial tests. In these cases, the excess pore-air pressure during compaction will dissipate instantaneously, but the excess pore-water pressure will dissipate with time. Under this condition, it can be considered that the air phase is drained and the water phase is undrained. This condition can be simulated in a constant water content (CW) triaxial test. The purpose of this paper is to present the characteristics of the shear strength, volume change, and pore-water pressure of a compacted silt during shearing under the constant water content condition. A series of CW triaxial tests was carried out on statically compacted silt specimens. The experimental results showed that initial matric suction and net confining stress play an important role in affecting the characteristics of the shear strength, pore-water pressure, and volume change of a compacted soil during shearing under the constant water content condition. The failure envelope of the compacted silt exhibited nonlinearity with respect to matric suction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号